
ME 461 C review Session
S. Keres

DISCLAIMER: These notes are in no way intended to be a complete reference for the C programming
material you will need for the class. They are intended to help focus your review efforts toward the
concepts that will be the most useful.

NOTE: The printf statement is explained at the end of this document.

Digital Representations

You are already familiar with decimal (base 10) representation.

Binary (base 2) is similar to decimal, except that the digits represent ones, twos, fours, eights, 24s, 25s,
etc, instead of ones, tens, hundreds, 103s, 104s, etc.

Hexadecimal (base 16) is the same, except the digits represent ones, sixteens, 256s, 163s, 164s, etc.
Numbers 10-16 are represented by the letters A-F.

Dec Bin Hex Dec Bin Hex

110 12 116 910 10012 916

210 102 216 1010 10102 A16

310 112 316 1110 10112 B16

410 1002 416 1210 11002 C16

510 1012 516 1310 11012 D16

610 1102 616 1410 11102 E16

710 1112 716 1510 11112 F16

810 10002 816 1610 100002 1016

• Hexadecimal is very convenient when working directly with memory and registers (as we will be)
because each nibble (group of 4 binary digits) can be represented with a single hexadecimal digit.

• In C, hexadecimal numbers are prefixed by ‘0x’ in C. Example: a = 0x52 is the same as a = 82,
which is the same as binary 101 0010.

• It is important to note that C does not distinguish between representations (everything is binary to a
computer). The ability to write numbers using different representations is a facility provided for our
convenience.

Operators

Arithmetic:

+ Addition ++ increment

- Subraction -- decrement

* Multiplication += assignment by addition

/ Division -= assignment by subtraction

% Modulus (remainder) *= assignment by multiplication

%= assignment by modulus /= assignment by division

• The increment and decrement operators do just that; the timing depends on whether they are
postfixed or prefixed to the operand. Example: a = b++; assigns b’s value to a, then increments b.
a = ++b; increments b, then assigns the value to a.

• Any of the arithmetic operators besides increment and decrement may be combined with the
assignment operator to act as shorthand as in the following example. Assignment by addition: a +=
b is the same as a = a + b. Likewise, a *= b is the same as a = a * b, and so on.

Logical:

a && b AND – true if neither operand is zero

a || b OR – true if either operand is nonzero

! a NOT – true if operand is zero

a == b equality – true if operands are the same number

a != b inequality – true if operands are not the same number

a > b greater than – true if a is larger than b

a < b less than – true if a is less than b

a >= b greater than or equal to

a <= b less than or equal to

Bitwise:

a | b bitwise OR

a & b bitwise AND

a ^ b bitwise XOR – exclusive OR

~ a bitwise complement – “flips” bits from 1 to 0 and 0 to 1

a << b left shift – shifts the bits of a left and inserts zeros to the right

a >> b right shift – shifts the bits of a right and inserts leading zeros

• All of the bitwise operators except the complement can be combined with the assignment operator to
act as shorthand as in the following example. a |= b is the same as a = a | b. Likewise a &= b is
the same as a = a & b, and so on.

Examples:

0x15 | 0x98 0x15 0001 0101

 | 0x98 1001 1000

 1001 1101 = 0x9D

~ 0xA6 0xA6 1010 0110

 complement 0101 1001 = 0x59

5 ^ 3 5 0101

 ^ 3 0011

 0110 = 6

9 << 2 9 1001
 left shift 10 0100 = 0x24 = 36

Other:

a = b assignment

a[b] array subscripting (indexing) – accesses the bth element of array a

&a reference – returns the memory address of a, i.e. constructs a pointer to a

*a dereference – accesses the value stored at location a in memory, “the thing that a
points to”

• The ability to work with pointers is essential to the creation of a sophisticated program. Our most
common use of pointers will involve passing variables by reference to functions.

Basic Data Types

Integer types:
char usually 8 bits long, may be used to store a single character
int usually 16 bits long, but more generally has more precision than a char

Basic type modifiers: long, short, signed, unsigned

Floating-point types:
float IEEE 32-bit floating point number
double double-precision floating-point number (64 bits)

Other:
void valueless, carries no data
* when postfixed to a type specifier constructs a pointer to a variable of that type

Variable declarations

Variables are declared like

type var_name = value;

where type is a valid type preceded by one or more modifiers, var_name is a name for the variable,
and value is an optional initial value for the variable.

Example: unsigned int counter1 = 0; float error = 0.0; char letter = ‘a’;

Arrays are declared like

type my_arr[dim1][dim2]…[dimN];

and may be initialized like

int my_2by2[2][2] = {{1, 2},{5, 9}};

• Variables declared outside of functions are global and carry their values throughout the program.
• Variables declared inside functions are local and carry their values only through a call to the function.

Type Conversion

• Explicit – A variable’s type may be changed (cast) to another temporarily during an operation.

A type cast is performed by prefixing the new type in parentheses to the quantity of interest.

Example:

int wholenumber = 0; float z = 5.0;

wholenumber = (int)(z/2.0) + 5;

• Implicit – Variables are promoted according to C conversion rules during operations between variables
of different types

In the following example, the integer is promoted to a float due to the floating point divisor and there is
no loss of precision; the result is z = 2.5.

int wholenumber = 5; float z = 0;

z = wholenumber/2.0;

If instead of 2.0 we had just used 2, the result would have been z = 2.0 due to an integer division.

• Take some time to familiarize yourself with C’s conversion rules using your C reference. Also, if you’re
not already proficient, review discrete math fundamentals.

Functions

Functions are created like

type function_name(argument list) {

variable list

function body

return statement

}

Example:

float my_avg(int a, int b, int c) { function header

 int sum = 0; local variables

 sum = a + b + c; function body

 return sum/3.0; return statement

}

This function takes three integers as inputs and returns their average. A call to the function would look
like

float z = 0.0;

z = my_avg(3, 4, 11);

• The function call itself can be treated as any variable of the same type as the output of the function. It

can be added, subtracted, multiplied, divided, type cast, etc.

• Note that we can create void functions that have no output. In this case the return statement is
optional. In the same way, we can create functions that have no input arguments. We can also create
functions that have neither inputs nor outputs. Example: Init_PWM(); is a complete line of code
assuming the function has neither inputs nor outputs.

• Functions must be prototyped by stating the header information in the global variable area before
they are used if their definition occurs later in the file or in a different c file.

Program Control Statements

If-Else

An if-else statement allows the programmer to execute code depending on the result of a conditional
statement.

if(condition) {

statement block

} elseif(condition) {

statement block

} else {

statement block

}

Example:
char up = 1; float a = 0.0;

if(up) {

 a += 0.1;

 if(a >= 10) up = 0;

} else {

 a -= 0.1;

 if(a <= -10) up = 1;
}

• The elseif statement allows the programmer to allocate code blocks to several mutually exclusive
alternatives.

While

The while statement executes a block of code repeatedly as long as the conditional is true.

while(condition) {

statement block

}

Do-while

Same as the while, except the code block executes once regardless of the conditional.

do {

statement block

} while(condition);

For

Executes a block of code repeatedly as long as the conditional (usually) based on the loop variable is
true.

for(initialization; conditional; operation) {

statement block

}

• At the beginning of the loop, the initialization is performed. After each execution of the statement
block, the operation is performed. When the conditional is false, the program continues execution
after the for statement (after the closing bracket).

Example:

int i, j = 0, my_arr[10];

for(i = 0; i < 10; i++) {

 my_arr[i] = j;

 j += 5;

}

Can you write out the contents of the array my_arr?

Switch-Case

Executes a statement block based on the value of a variable.

switch(control variable) {

 case constant1:

 statement block
 break;

 case constant2:

 statement block

 break;

 ⋮

 default:

 statement block
 break;

}

• The code block associated with the case matching the control variable’s value is executed once. If no
match is found among the cases, the code associated with the default statement is executed.

• If the break statements are omitted, code execution will continue through every case once a match is
found. This is rarely desirable.

• As with all of the control statements, nesting switch statements is allowed and often very useful.

Preprocessor Directives

#include – used to tell the compiler what libraries to “look in” for function declarations, variables,
macros, etc.

Example: #include <msp430x22x2.h>

• Use <> around the file name when it is in the search path (usually defined in a properties section) and
double quotes around the file name when it is in the project directory

#define – used as a “dumb” text find & replace macro

Example: #define PI 3.141592654

This causes all instances of the text “PI” in the c file to be replaced by the constant 3.141592654.

• #define is very useful for parameterizing your programs. Use the #define macro whenever you will
use a special constant throughout your program for clarity and ease of modification.

#define can also be made to accept input arguments.

Example: #define AVG(A,B) (A+B/2.0)

This is useful for creating very simple in-line functions.

• Remember, #define is a simple text replace. Careful use of parentheses is required!

#pragma – directive used to specify compiler-specific instructions.

Example: #pragma vector=TIMERA0_VECTOR

The “vector” pragma is used before a function definition to tell the compiler that the function should be
placed in the interrupt vector address.

#if, #ifdef, #ifndef, #elif, #else, #endif – conditional compilation. These will see limited, if
any, use in our class.

The printf() function
The printf function is used to print formatted text to a terminal or LCD screen. The function you will use
is “serial_printf”.
 Format types and indicators:
 %d or %i are the same and they print a 16 bit integer in decimal format
 %ld prints a 32 bit integer in decimal format
 %x prints a 16 bit integer in hexadecimal format
 %xl prints a 32 bit integer in hexadecimal format
 %f prints a 32 bit float
 %.3f prints a 32 bit float with three digits of precision
 %.4f prints a 32 bit float with four digits of precision
 %.5f etc.
 %s prints a string (null terminated array of characters)
 %c prints a single character
 Examples:
 serial_printf(“Dan saw %d ducks.”,numducks);
 If numducks was 10 the terminal would display: Dan saw 10 ducks.

 serial_printf(“Boat number %d had a time of %.2f minutes”, boatnum,boattime);
 if boatnum = 23 and boattime = 34.673: Boat number 23 had a time of 34.67 minutes

 char teststring[14] = “This is a test”;
 serial_printf(“Text to display %s”,teststring);

C References

In lab:
Schildt, Teach Yourself C (1997).

Kernighan, Ritchie, The C Programming Language (1988).

Harbison, Steele, C: A Reference Manual (2002).

