
Last Updated: 09 October 2023

ME 461 1

ME 461 Laboratory #5 (Three Week Lab)
SPI Serial Port and the MPU-9250 IMU

Goals
1. Write code to setup SPIB. We will initially just scope the SPI Pins to see that the transmission

and the receive interrupts are working correctly.

2. Write code to communicate with the DAN28027 chip. Your code should send two PWM values

and receive two 12-bit ADC conversions

3. Write code to communicate with the MPU-9250, reading three accelerometer readings and three

gyro readings.

Exercise 1
In past semesters there was a bit of soldering that needed to be finished for this lab. The robot car has

already been soldered for you, so the soldering is not needed this year.

The “DAN28027” chip has been soldered to your robot’s breakout board. Also, jumper wires have been

soldered to connect DAN28027’s ADC1 pin to Joystick X and DAN28027’s ADC2 pin to Joystick Y.

In Exercise 2, scope DAN28027’s PWM1 and PWM2 pins at the connector in the left corner of the

robot’s breakout board which has the labels “27_0” and “27_1.” Have your TA show you where these

pins are on the robot.

For this exercise, I would like you to set up the SPI port for sending and receiving but you will not

communicate with an actual chip. I would like you to set up the SPI and then transmit two bytes of data

every 10ms in CPU timer 0’s interrupt. Since the SPI pins will not be selecting any chip, the transmitted

data is not doing anything, but it is allowing you to scope the four SPI pins and check that SPIB is set

up correctly. Modify the following code after copying and pasting it into the specified locations.

1. Copy and paste this shell code in to your main() function below the init_serialSCIA, etc.,

function calls. Fill in the ??? with the correct value by reading the SPI Condensed TechRef and

its register descriptions.
GPIO_SetupPinMux(9, GPIO_MUX_CPU1, 0); // Set as GPIO9 and used as DAN28027 SS
GPIO_SetupPinOptions(9, GPIO_OUTPUT, GPIO_PUSHPULL); // Make GPIO9 an Output Pin
GpioDataRegs.GPASET.bit.GPIO9 = 1; //Initially Set GPIO9/SS High so DAN28027 is not selected

GPIO_SetupPinMux(66, GPIO_MUX_CPU1, 0); // Set as GPIO66 and used as MPU-9250 SS
GPIO_SetupPinOptions(66, GPIO_OUTPUT, GPIO_PUSHPULL); // Make GPIO66 an Output Pin
GpioDataRegs.GPCSET.bit.GPIO66 = 1; //Initially Set GPIO66/SS High so MPU-9250 is not selected

GPIO_SetupPinMux(63, GPIO_MUX_CPU1, ???); //Set GPIO63 pin to SPISIMOB
GPIO_SetupPinMux(64, GPIO_MUX_CPU1, ???); //Set GPIO64 pin to SPISOMIB
GPIO_SetupPinMux(65, GPIO_MUX_CPU1, ???); //Set GPIO65 pin to SPICLKB

http://coecsl.ece.illinois.edu/me461/Labs/SPICondensed_TechRef.pdf

ME 461 2

EALLOW;
GpioCtrlRegs.GPBPUD.bit.GPIO63 = 0; // Enable Pull-ups on SPI PINs Recommended by TI for SPI Pins
GpioCtrlRegs.GPCPUD.bit.GPIO64 = 0;
GpioCtrlRegs.GPCPUD.bit.GPIO65 = 0;
GpioCtrlRegs.GPBQSEL2.bit.GPIO63 = 3; // Set I/O pin to asynchronous mode recommended for SPI
GpioCtrlRegs.GPCQSEL1.bit.GPIO64 = 3; // Set I/O pin to asynchronous mode recommended for SPI
GpioCtrlRegs.GPCQSEL1.bit.GPIO65 = 3; // Set I/O pin to asynchronous mode recommended for SPI
EDIS;

// ---
SpibRegs.SPICCR.bit.SPISWRESET = ???; // Put SPI in Reset

SpibRegs.SPICTL.bit.CLK_PHASE = 1; //This happens to be the mode for both the DAN28027 and
SpibRegs.SPICCR.bit.CLKPOLARITY = 0; //The MPU-9250, Mode 01.
SpibRegs.SPICTL.bit.MASTER_SLAVE = ???; // Set to SPI Master
SpibRegs.SPICCR.bit.SPICHAR = ???; // Set to transmit and receive 16-bits each write to SPITXBUF
SpibRegs.SPICTL.bit.TALK = ???; // Enable transmission
SpibRegs.SPIPRI.bit.FREE = 1; // Free run, continue SPI operation
SpibRegs.SPICTL.bit.SPIINTENA = ???; // Disables the SPI interrupt

SpibRegs.SPIBRR.bit.SPI_BIT_RATE = ???; // Set SCLK bit rate to 1 MHz so 1us period. SPI base clock is
 // 50MHZ. And this setting divides that base clock to create SCLK’s period
SpibRegs.SPISTS.all = 0x0000; // Clear status flags just in case they are set for some reason

SpibRegs.SPIFFTX.bit.SPIRST = ???;// Pull SPI FIFO out of reset, SPI FIFO can resume transmit or receive.
SpibRegs.SPIFFTX.bit.SPIFFENA = ???; // Enable SPI FIFO enhancements
SpibRegs.SPIFFTX.bit.TXFIFO = 0; // Write 0 to reset the FIFO pointer to zero, and hold in reset
SpibRegs.SPIFFTX.bit.TXFFINTCLR = 1; // Write 1 to clear SPIFFTX[TXFFINT] flag just in case it is set

SpibRegs.SPIFFRX.bit.RXFIFORESET = 0; // Write 0 to reset the FIFO pointer to zero, and hold in reset
SpibRegs.SPIFFRX.bit.RXFFOVFCLR = 1; // Write 1 to clear SPIFFRX[RXFFOVF] just in case it is set
SpibRegs.SPIFFRX.bit.RXFFINTCLR = ???; // Write 1 to clear SPIFFRX[RXFFINT] flag just in case it is set
SpibRegs.SPIFFRX.bit.RXFFIENA = ???; // Enable the RX FIFO Interrupt. RXFFST >= RXFFIL

SpibRegs.SPIFFCT.bit.TXDLY = ???; //Set delay between transmits to 16 spi clocks. Needed by DAN28027
chip

SpibRegs.SPICCR.bit.SPISWRESET = ???; // Pull the SPI out of reset

SpibRegs.SPIFFTX.bit.TXFIFO = ???; // Release transmit FIFO from reset.
SpibRegs.SPIFFRX.bit.RXFIFORESET = 1; // Re-enable receive FIFO operation
SpibRegs.SPICTL.bit.SPIINTENA = 1; // Enables SPI interrupt. !! I don’t think this is needed. Need to
Test

SpibRegs.SPIFFRX.bit.RXFFIL =???; //Interrupt Level to 16 words or more received into FIFO causes
interrupt. This is just the initial setting for the register. Will be changed below

2. Set up CPU Timer 0’s interrupt function to be called every 10ms. This is the default so you may

not need to change anything. Inside CPU Timer 0’s interrupt function, call these three lines of

code to tell the SPI to transmit two 16-bit values over the SPI. Because this is a SPI serial port,

two 16-bit values will be received. Whenever you transmit data in a SPI serial port, you also

receive. Once two 16-bit values are received into the FIFO the SPIB_RX_INT hardware

interrupt function will be called.
Clear GPIO9 Low to act as a Slave Select. Right now, just to scope. Later to select DAN28027 chip
GpioDataRegs.????? = ???;
SpibRegs.SPIFFRX.bit.RXFFIL = 2; // Issue the SPIB_RX_INT when two values are in the RX FIFO
SpibRegs.SPITXBUF = 0x4A3B; // 0x4A3B and 0xB517 have no special meaning. Wanted to send
SpibRegs.SPITXBUF = 0xB517; // something so you can see the pattern on the Oscilloscope

3. Set up the SPIB interrupt service routine:

a. At the top of your C file add a predefinition of __interrupt void

SPIB_isr(void).

ME 461 3

b. Then add this function to the PieVectTable like you did in Lab 4 for the ADCD, ADCB,

and ADCA interrupt service routines.

c. Look up in the PIE Channel Mapping Table the interrupt number for SPIB_RX and

implement this interrupt by enabling both the major interrupt by typing IER |=

M_INT? and the PIE group and channel assignment using PIEIER?.bit.???.

d. Finally, insert the SPIB_isr(void) function, below, and correct the ???

int16_t spivalue1 = 0;
int16_t spivalue2 = 0;
__interrupt void SPIB_isr(void) {

spivalue1 = SpibRegs.???; // Read first 16-bit value off RX FIFO. Probably is zero since no chip
spivalue2 = SpibRegs.???; // Read second 16-bit value off RX FIFO. Again probably zero
GpioDataRegs.???? = ???; // Set GPIO9 high to end Slave Select. Now Scope. Later to deselect
DAN28027
// Later when actually communicating with the DAN28027 do something with the data. Now do nothing.

SpibRegs.SPIFFRX.bit.RXFFOVFCLR = 1; // Clear Overflow flag just in case of an overflow
SpibRegs.SPIFFRX.bit.RXFFINTCLR = 1; // Clear RX FIFO Interrupt flag so next interrupt will happen

PieCtrlRegs.PIEACK.all = PIEACK_GROUP6; // Acknowledge INT6 PIE interrupt

}

4. Compile and run this code. Use the logic analyzer channels of the oscilloscope to scope SS,

SCLK, MOSI and MISO. Trigger on SS. Verify that the correct clock rate and clock mode is

being used. Verify that 0x4A3B and 0xB517 are being transmitted and probably zero is being

received.

Exercise 2
For this exercise, I would like you to use the DAN28027 datasheet to figure out how to communicate

with the DAN28027 over the SPIB serial port. All the setups you performed in Exercise 1 are correct

for the DAN28027 chip, so you have most of the initialization code developed at this point. For

example, the DAN28027 communicates using SPI Mode 1 (01) and that is what you set in Exercise 1.

Also, you need to communicate 16 bits at a time to the DAN28027. You will be sending three 16-bit

values and receiving three 16-bit values for one communication with the DAN28027 chip.

Modify your Exercise 1 code so that every 20 milliseconds it communicates two PWM values to the

DAN28027 chip and receives the two ADC values from the DAN28027. Remember that when the SPI

is transmitting it is also receiving just as the DAN28027 datasheet specifies. For the PWM values you

send, note from the datasheet that the command value is from 0 to 3000. So just as you did in Lab 3,

when gradually increasing and then decreasing the LED brightness, every 20 milliseconds increment

the PWM commands by 10 until they reach 3000 and then start decrementing by 10 until they reach 0

and then repeat the pattern. To see if these values are sent correctly to the DAN28027 chip, use more

channels of the logic analyzer to scope the DAN28027’s PWM1 and PWM2 pins. You should see the

http://coecsl.ece.illinois.edu/me461/Labs/PeripheralInterruptChannelMapTable.pdf
http://coecsl.ece.illinois.edu/me461/DAN28027_Datasheet.pdf

ME 461 4

PWM duty cycle gradually getting larger and then smaller. You can scope PWM1 and PWM2 at the

bottom left corner of your green board at the connector that is labelled 27_0 and 27_1.

For the two ADC readings that the DAN28027 sends over SPI, print their value in units of volts to Tera

Term every 100 milliseconds. Note that these ADC channels are 12-bit and have a range of 0V to 3.3V.

So, 0 equates to 0V and 4095 equates to 3.3V. To test that the ADC readings are correct, move your

joystick and see that the voltages change.

Pointers to think about when developing this code:

• Figure out how many 16-bit values to write to the FIFO for one transmission to the DAN28027.

As long as this number of values is less than 16 you can write all the values one after the other

to the FIFO and have the FIFO take care of sending each value one at a time across the SPI

serial port.

• Don’t forget to set the SpibRegs.SPIFFRX.bit.RXFFIL (Receive FIFO interrupt level) to

the number of 16-bit values you write to the TX FIFO every 20 milliseconds. Remember, the

number of words you write to the TX FIFO will be the number of words you receive in the RX

FIFO and therefore cause an interrupt when all the values have been received.

• Study the timing diagram of the DAN28027 datasheet and ask questions.

• Don’t forget that some of the data you receive may not be a part of an ADC reading and should

not be used.

Exercise 3
For this exercise you are going in initialize the MPU-9250 and then read its three accelerometer readings

and its three gyro readings every 1 ms. Use the MPU-9250 Datasheet, MPU-9250 Register Reference

and especially my MPU-9250 SPI Programming Tips for the explanation on how to fill in the needed

code below.

First finish the setupSpib() function given below. Much of the code is given to you but you will need

to add to this function the parts described. Copy this function to the bottom of your project’s C file and

create a predefinition of the function at the top of your C file. Then make sure to call setupSpib() in

main() after the init_serialSCIA(), etc. statements and before interrupts are enabled.
void setupSpib(void) //Call this function in main() somewhere after the DINT; line of code.
{
 int16_t temp = 0;
Step 1.
 // cut and paste here all the SpibRegs initializations you found for part 3. Make sure the TXdelay in
between each transfer to 0. Also don’t forget to cut and paste the GPIO settings for GPIO9, 63, 64, 65,
66 which are also a part of the SPIB setup.
 SpibRegs.SPICCR.bit.SPICHAR = 0xF;
 SpibRegs.SPIFFCT.bit.TXDLY = 0x00;
 //---

http://coecsl.ece.illinois.edu/me461/Labs/PS-MPU-9250A-01-v1.1.pdf
http://coecsl.ece.illinois.edu/me461/Labs/MPU-9250-Register-Map.pdf
http://coecsl.ece.illinois.edu/me461/Labs/MPU-9250-Addendum.pdf

ME 461 5

Step 2.
 // perform a multiple 16-bit transfer to initialize MPU-9250 registers 0x13,0x14,0x15,0x16
 // 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C 0x1D, 0x1E, 0x1F. Use only one SS low to high for all these writes
 // some code is given, most you have to fill you yourself.
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1; // Slave Select Low

 // Perform the number of needed writes to SPITXBUF to write to all 13 registers. Remember we are sending
16-bit transfers, so two registers at a time after the first 16-bit transfer.
 // To address 00x13 write 0x00
 // To address 00x14 write 0x00
 // To address 00x15 write 0x00
 // To address 00x16 write 0x00
 // To address 00x17 write 0x00
 // To address 00x18 write 0x00
 // To address 00x19 write 0x13
 // To address 00x1A write 0x02
 // To address 00x1B write 0x00
 // To address 00x1C write 0x08
 // To address 00x1D write 0x06
 // To address 00x1E write 0x00
 // To address 00x1F write 0x00

 // wait for the correct number of 16-bit values to be received into the RX FIFO
 while(SpibRegs.SPIFFRX.bit.RXFFST !=???);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1; // Slave Select High
 temp = SpibRegs.SPIRXBUF;
 // ???? read the additional number of garbage receive values off the RX FIFO to clear out the RX FIFO
 DELAY_US(10); // Delay 10us to allow time for the MPU-2950 to get ready for next transfer.

Step 3.
 // perform a multiple 16-bit transfer to initialize MPU-9250 registers 0x23,0x24,0x25,0x26
 // 0x27, 0x28, 0x29. Use only one SS low to high for all these writes
 // some code is given, most you have to fill you yourself.
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1; // Slave Select Low

 // Perform the number of needed writes to SPITXBUF to write to all 7 registers
 // To address 00x23 write 0x00
 // To address 00x24 write 0x40
 // To address 00x25 write 0x8C
 // To address 00x26 write 0x02
 // To address 00x27 write 0x88
 // To address 00x28 write 0x0C
 // To address 00x29 write 0x0A

 // wait for the correct number of 16-bit values to be received into the RX FIFO
 while(SpibRegs.SPIFFRX.bit.RXFFST !=???);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1; // Slave Select High
 temp = SpibRegs.SPIRXBUF;
 // ???? read the additional number of garbage receive values off the RX FIFO to clear out the RX FIFO
 DELAY_US(10); // Delay 10us to allow time for the MPU-2950 to get ready for next transfer.

Step 4.
 // perform a single 16-bit transfer to initialize MPU-9250 register 0x2A
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 // Write to address 0x2A the value 0x81

 // wait for one byte to be received
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);

 // The Remainder of this code is given to you and you do not need to make any changes.
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x3800 | 0x0001); // 0x3800
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x3A00 | 0x0001); // 0x3A00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);

ME 461 6

 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x6400 | 0x0001); // 0x6400
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x6700 | 0x0003); // 0x6700
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x6A00 | 0x0020); // 0x6A00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x6B00 | 0x0001); // 0x6B00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7500 | 0x0071); // 0x7500
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7700 | 0x00EB); // 0x7700
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7800 | 0x0012); // 0x7800
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7A00 | 0x0010); // 0x7A00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7B00 | 0x00FA); // 0x7B00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7D00 | 0x0021); // 0x7D00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(10);
 GpioDataRegs.GPCCLEAR.bit.GPIO66 = 1;
 SpibRegs.SPITXBUF = (0x7E00 | 0x0050); // 0x7E00
 while(SpibRegs.SPIFFRX.bit.RXFFST !=1);
 GpioDataRegs.GPCSET.bit.GPIO66 = 1;
 temp = SpibRegs.SPIRXBUF;
 DELAY_US(50);

 // Clear SPIB interrupt source just in case it was issued due to any of the above initializations.
 SpibRegs.SPIFFRX.bit.RXFFOVFCLR=1; // Clear Overflow flag
 SpibRegs.SPIFFRX.bit.RXFFINTCLR=1; // Clear Interrupt flag
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP6;

ME 461 7

}

Answer to your TA. In the above initialization of the MPU-9250 you were given the values to write to

certain registers. I would like you to read the Register Map document and explain how these following

register assignments setup the MPU-9250. Setting CONFIG (address 0x1A) to 0x2, GYRO_CONFIG

(0x1B) to 0x0, ACCEL_CONFIG (0x1C) to 0x8 and ACCEL_CONFIG2 (0x1D) to 0x6.

Use your DAN28027 code as a guide to complete these next steps along with studying my MPU-9250

SPI Programming Tips.

Now every 1ms inside your CPU Timer 0 interrupt function, transmit the correct 16-bit values and

correct number of 16-bit values to the MPU-9250 so that it will transmit back the three accelerometer

readings and the three gyro readings. I am going to leave reading and processing the magnetometer

readings as a possible final project for the class, so we will not worry about them for this lab. Make

sure to set SpibRegs.SPIFFRX.bit.RXFFIL to the correct value so that the SPIB interrupt function

will be called when the SPI transmission from the master to the slave and also from the slave to the

master is complete. Remember these transmissions happen at the same time.

Inside the SPIB interrupt function, make sure to pull Slave Select high. Then, read the three

accelerometer integer readings and the three gyro integer readings. To read these three 16-bit

accelerometer readings and the three 16-bit gyro readings in one chip select cycle, you should notice

that you also have to read the 16-bit temperature reading which falls inbetween. Scale the accelerometer

readings to units of g. Remember the initialization chose the range of -4g to 4g for the accelerometers.

Also, scale the gyro readings to units of degrees/second. The initialization chose the range of -250 to

250 degrees per second. Print these six sensor readings to Tera Term every 200ms. Demo to your TA.

With your IMU readings, you will probably see that the resting values of the accelerometer are not at

zero and possibly saturated at 4g or -4g. Every once in a while we find that the accelerometer axis that

is saturated is broken. But most of the time the initial offset value needs to be adjusted to get the

accelerometer axis out of saturation and operational. Look at the register map for XA_OFFS, YA_OFFS

and ZA_OFFS and notice that these are 15-bit offsets that allow for an integer offset between -16384

and 16383. As a first exercise show your TA that the default offsets set to the IMU in the given

setupSpib function are XA offset equal to -2679, YA offset equal to 2173, and ZA offset equal to

4264. Adjust these offsets so that the resting value of each accelerometer axis is somewhat close to zero.

This will probably take you a number of iterations. Demo to your TA.

Lab Checklist
1. Demonstrate your Exercise 1 code working that sends and receives two bytes but only used to

scope SPI signals.

2. Demonstrate your Exercise 2 code communicating with the DAN28027 chip.

http://coecsl.ece.illinois.edu/me461/Labs/MPU-9250-Register-Map.pdf
http://coecsl.ece.illinois.edu/me461/Labs/MPU-9250-Addendum.pdf
http://coecsl.ece.illinois.edu/me461/Labs/MPU-9250-Addendum.pdf

ME 461 8

3. Demonstrate your Exercise 3 code communicating with the MPU9250 and printing

accelerometer and gyro readings. Make sure you have adjusted the accelerometer’s offset so

that the resting value of all accelerometers is pretty close to zero.

4. Submit all your written code after adding comments explaining your code and what you learned.

Also be clear what code is for what exercise.

5. Answer this question in your HowTo document. For your final project or work outside of this

course, you are asked to communicate with a new device over the SPI serial port. Come up with

at least six items (there are definitely more than six) you would look for in the device’s datasheet

on how to program the F28379D and its SPI serial prt to communicate with the new device.

	Goals
	Exercise 1
	Exercise 2
	Exercise 3
	Lab Checklist

