
Last Updated: 07 September 2023 

ME 461  1 

ME 461 Laboratory #2 (One Week Lab) 
Introduction to TMS320F28379D GPIO 

Programming and Texas Instruments Code 
Composer Studio 

Prelab Questions 
1. If there was such thing as a 24-bit signed integer, what would be the largest positive number it 

could represent and what is the smallest negative number it could represent?  

2. Below are three (signed) int16_t integers represented in binary format. What are these numbers 

in decimal format? 

a. 1101110000011011 

b. 0001111100110101 

c. 1000000010110011 

3. In question 2a, is bit 10 high 1 or low 0? Remember, we start with bit 0 as the right most bit. 

4. Explain to your TA what this if statement is checking for (think in binary) (& is bitwise AND) 
 if ((myregister & 0x4) == 0x4) { 
       // Do something 
 } 

Goals 
1. Use CPU Timer to periodically perform desired procedures/code. 

2. Work with port inputs and port outputs. 

3. What to do with a compiler error. 

4. Debugging your source code with Breakpoints and the Watch Window. 

GPIO Reference 
The following tables and information will be helpful as you progress through this lab. 

LED’s Default GPIO Assignments: 

LED1 GPIO22, Controlled with Registers GPADAT, GPASET, GPACLEAR and GPATOGGLE 

LED2 GPIO94, Controlled with Registers GPCDAT, GPCSET, GPCCLEAR and GPCTOGGLE 

LED3 GPIO95, Controlled with Registers GPCDAT, GPCSET, GPCCLEAR and GPCTOGGLE 

LED4 GPIO97, Controlled with Registers GPDDAT, GPDSET, GPDCLEAR and GPDTOGGLE 

LED5 GPIO111, Controlled with Registers GPDDAT, GPDSET, GPDCLEAR and GPDTOGGLE 



ME 461  2 

LED6 GPIO130, Controlled with Registers GPEDAT, GPESET, GPECLEAR and GPETOGGLE 

LED7 GPIO131, Controlled with Registers GPEDAT, GPESET, GPECLEAR and GPETOGGLE 

LED8 GPIO25, Controlled with Registers GPADAT, GPASET, GPACLEAR and GPATOGGLE 

LED9 GPIO26, Controlled with Registers GPADAT, GPASET, GPACLEAR and GPATOGGLE 

LED10 GPIO27, Controlled with Registers GPADAT, GPASET, GPACLEAR and GPATOGGLE 

LED11 GPIO60, Controlled with Registers GPBDAT, GPBSET, GPBCLEAR and GPBTOGGLE 

LED12 GPIO61, Controlled with Registers GPBDAT, GPBSET, GPBCLEAR and GPBTOGGLE 

LED13 GPIO157, Controlled with Registers GPEDAT, GPESET, GPECLEAR and GPETOGGLE 

LED14 GPIO158, Controlled with Registers GPEDAT, GPESET, GPECLEAR and GPETOGGLE 

LED15 GPIO159, Controlled with Registers GPEDAT, GPESET, GPECLEAR and GPETOGGLE 

LED16 GPIO160, Controlled with Registers GPFDAT, GPFSET, GPFCLEAR and GPFTOGGLE 

Push Button’s Default GPIO Assignments: 

PB1 GPIO4, Read bit status with Register GPADAT 

PB2 GPIO5, Read bit status with Register GPADAT 

PB3 GPIO6, Read bit status with Register GPADAT 

PB4 GPIO7, Read bit status with Register GPADAT 

JoyStick PB GPIO8, Read bit status with Register GPADAT 

GPIO Register Use when GPIO pin set as Output:  

The GPIO Registers are 32-bit registers, but we use unions and bitfields in the C/C++ programming 

language to control just one bit of the 32-bit register at a time. The .all part of the C/C++ union is the 

entire 32-bit register. The .bit.GPIO19 is just one bit in the 32-bit register. So, these two lines of C 

code perform the same operation: 
GpioDataRegs.GPASET.all = 0x00000800; //Harder to see with this code to know that bit 11th is being set 
GpioDataRegs.GPASET.bit.GPIO11 = 1;   //Easier to understand that we are setting the 11th bit 
 

Register Usage Example 

GP?DAT 

GP?DAT.bit.GPIO? = 1, Sets that Pin High, 3.3V GpioDataRegs.GPADAT.bit.GPIO19 = 1; Sets GPIO19 
High/3.3V 

GP?DAT.bit.GPIO? = 0, Sets that Pin Low, 0V/GND GpioDataRegs.GPADAT.bit.GPIO19 = 0; Sets GPIO19 
Low/0V 

GP?SET 

GP?SET.bit.GPIO? = 1, Sets that Pin High, 3.3V GpioDataRegs.GPBSET.bit.GPIO37 = 1; Sets GPIO37 
High/3.3V 

GP?SET.bit.GPIO? = 0, Does Nothing GpioDataRegs.GPBSET.bit.GPIO37 = 0; Does Nothing 

GP?CLEAR 

GP?CLEAR.bit.GPIO? = 1, Sets that Pin Low, 0V/GND GpioDataRegs.GPCCLEAR.bit.GPIO70 = 1; Sets GPIO70 
Low/0V 

GP?CLEAR.bit.GPIO? = 0, Does Nothing GpioDataRegs.GPCCLEAR.bit.GPIO70 = 0; Does Nothing 

GP?TOGGLE 

GP?TOGGLE.bit.GPIO? = 1, Sets Pin opposite of its 
current state. 

GpioDataRegs.GPDTOGGLE.bit.GPIO98 = 1; was 3.3V 
then 0V or was 0V then 3.3V 

GP?TOGGLE.bit.GPIO? = 0, Does Nothing GpioDataRegs.GPDTOGGLE.bit.GPIO98 = 0; Does 
Nothing 



ME 461  3 

GPIO Register Use When GPIO Pin Set as Input: 

Each GPIO pin, when setup as an input, has an internal pull-up resistor that can either enabled/connected 

or disabled/disconnected to that GPIO pin. With the passive push button on our breakout board, we will 

need to enable the pull-up resistor.  

Register Usage Example 

GP?DAT 
If GP?DAT.bit.GPIO? is equal to 1 then the Pin is High, 3.3V 

If GP?DAT.bit.GPIO? is equal to 0 then the Pin is Low, 0V/GND 

if (GpioDataRegs.GPADAT.bit.GPIO19 == 1) { 
//code that needs to run when input pin GPIO19 
is High/3.3V 
} else { 
// code that needs to run when input ping 
GPIO19 is Low/0V 
} 

Exercise 1: Code Composer Introduction 
First, make sure your repository is up to date. Under Lab 1, find the Git help file titled “Using the 

ME461 Repository” and read and perform the steps of the last section of the document titled “Course 

File Updates.” If there are any updates, these steps will pull the latest updates from the class repository 

you merged in Lab 1. This procedure can be a bit confusing so ask your TA for help if needed. You 

should perform these steps each time you come to a new lab session to make sure you have the latest 

starter code. 

Now that you have the updates, import “LABstarter” (instructions in Lab 1 or your HowTo document) 

to create a new project in your workspace and call it lab2. Once you have your new lab2 project, perform 

the below steps: 

1. For this lab, you will only be using CPU Timer 2’s interrupt service routine 

cpu_timer2_isr(void). We will leave the timer0 and timer1 functions in our source code, 

but we will not enable timer0 or timer1. In main(), find the two lines of code that set the TIE 

(Timer Interrupt Enable) bit to enable timer 0 and timer 1. Comment these two lines so they 

are not included in your program. i.e: 
//CpuTimer0Regs.TCR.all = 0x4000; 

  //CpuTimer1Regs.TCR.all = 0x4000; 
 

2. In main() find the ConfigCpuTimer(…) function call for CPU timer 2 and set its period to 

0.25 seconds. Also find CPU timer 2’s interrupt function cpu_timer2_isr(void). Note that 

in this function, it is blinking on and off the blue LED on the Launchpad. Build and debug this 

code to make sure that the code compiles and runs. You should see the blue LED blinking on 

and off every half second. 

Once that is working, terminate your debug session so you are back in edit mode. Before going 

to the next step, let’s take a few minutes to think about the period value that you passed to the 

ConfigCpuTimer(…) function. 0.25 seconds is a large number of microseconds so you may 

have thought about what the largest acceptable number is to pass to this period parameter. To 



ME 461  4 

find this largest period setting we need to look at the TIM (timer register) and PRD (period 

register) registers of the CPU Timers. Both the PRD and TIM registers are 32-bits long and 

they each store a 32-bit unsigned integer. The TIM register starts at 0 and counts up by 1 every 

1/200000000 seconds (200Mhz). Whenever the TIM register reaches the value stored in the 

PRD register an interrupt event is issued calling the CpuTimer2 interrupt service routine. At 

this moment, the TIM register is also set back to 0 to start timing again. Knowing that a 32-bit 

unsigned integer has a maximum value, what is the largest period in seconds that the CPU 

Timers can be set to? Explain your answer to your TA. 

3. Create a global int32_t variable and name it something like numTimer2calls. Inside the 

cpu_timer2_isr(void) function, increment that variable by one each time that function is 

entered. In addition, every time the function is entered, set the already defined global variable 

UARTPrint to 1. By doing this you are telling the main() while loop to print text through a 

UART serial port to your PC. Find this serial_printf(…) function call in the main() while 

loop. Does it make sense that when you set UARTPrint to 1, the while loop will call the 

serial_printf(…) function? Why is UARTPrint set to zero inside the if statement after 

serial_printf(…) is called? Explain to your TA. 

Change the text so that it prints your numTimer2calls global variable. Since 

numTimer2calls is a 32-bit integer you will need to use the %ld formatter. Also have the 

serial_printf(…) function print the value of the numRXA variable just as it does in the 

default serial_printf(…) statement. 

To see this printed text, you need to install a serial terminal on you PC. TeraTerm is already 

installed on the Windows machines in lab. On Mac do a web search for the “screen” 

application. We need to figure out what serial port COM number your USB serial port is using. 

The easiest way to find this is to run “Device Manager” in Windows and find the “Ports” item. 

Under ports find the COM number for the device titled “XDS100 Class USB Serial Port”. Run 

Tera Term and select the “Serial” item and find the XDS100 COM port in the list of COM ports. 

Final thing to do is change the Baud (or Bit) speed of the COM port. Still in Tera Term select 

the menu item “Setup” and then “Serial Port…”. Change the “Speed” to 115200 if it is not 

already. Build and debug your code and check that the LaunchPad’s blue LED is still blinking 

and your text is printing to Tera Term. As in Lab 1, type text in Tera Term to increment the 

numRXA variable that you are printing. We will not use numRXA in this lab, but just wanted to 

show that the UART is receiving characters along with transmitting characters.  

4. Write two worker functions void SetLEDRowsOnOff(int16_t rows) and int16_t 

ReadSwitches(void): 



ME 461  5 

a. void SetLEDRowsOnOff(int16_t rows) takes a 16-bit integer as a parameter. 

The five least significant bits of this integer determine if the five LED rows are on or 

off. Bit 0 determines the bottom most row’s state. Bit 1 determines the next up row’s 

state. Bit 2 determines the middle row’s state. Bit 3 determines the second from the top 

row’s state. Bit 4 is the top row’s state. For example, if 18 (0x12, which is binary 

10010) is passed to your function, then the top row of LEDs should be ON and the 

second to the bottom row of LEDs should be ON. Use five if statements inside your 

function to check if the integer passed to your function has the least significant five bits 

either individually set or cleared. Utilize the bitwise AND (&) operator to do so. If set, 

turn ON the corresponding row. If cleared, turn OFF the corresponding row. See the 

reference tables for definitions and the example code in the comments of the 

LEDPatterns.c file on writing to the registers that control the LEDs. I want you using 

the GP?SET and GP?CLEAR registers to turn on or off the LEDs. To test this function, 

increment a global int16_t variable by 1 in your CPU timer 2 interrupt routine and pass 

this value to your SetLEDRowsOnOff(int16_t rows) function. What happens if 

the number passed to SetLEDRowsOnOff(int16_t rows) is greater than 31? 

Explain to your TA.  

b. int16_t ReadSwitches(void) returns a 16-bit integer that the least significant 

four bits indicates the state of the four push buttons. Note that when each of the push 

buttons are not pressed the GPIO pin reads a 1 or high voltage. When pressed the GPIO 

pin reads a 0 or ground. This is because the IO pin is using an internal pullup resistor. 

This function should have four if statements and use the bitwise OR ( | ) operator to 

appropriately set bits of a local variable that will be returned by this function. So, start 

the return variable at zero. Then, if switch 1 is pressed OR 0x1 with the local variable. 

If switch 2 is pressed OR 0x2 with the variable. If switch 3 is pressed OR ??? with the 

variable. If switch 4 is pressed OR ??? with the variable. Finally, return the local 

variable with the return instruction. See the reference tables for the GPIO pins that 

are connected to the push buttons and that are setup as inputs with pull-up resistor 

enabled in the default code.  

5. Now that you have these worker functions, make your program a bit more interesting. Add code 

in your CPU timer 2 interrupt function so that you display to the LED rows the value returned 

from your ReadSwitches(void) function. Do this by creating a global int16_t variable and 

assign it the value returned from ReadSwitches(void). Pass this global variable to your 

SetLEDRowsOnOff(int16_t rows) function to see its binary value displayed on the LED 

rows. Also print this global variable by adding it to the serial_printf(…) function in 

main()’s while loop. Make sure to use the %d formatter because this is an int16_t variable. 



ME 461  6 

Show this working to your TA.  

Exercise 2: Green Board Buttons 
1. To get some more practice with starting a new project, create another new project by importing 

the LABstarter example and renaming it and its main source file. Again, disable CPU timer0 

and timer1’s interrupt by commenting out: 
  //CpuTimer0Regs.TCR.all = 0x4000; 
  //CpuTimer1Regs.TCR.all = 0x4000; 
 

Change the period of CPU timer 2 to 0.25 seconds. Also copy from your previous project the 

two worker functions you created. Do not modify these worker functions. Instead use them 

“as is” in the below steps.  

2. Change the code in cpu_timer2_isr(void) to increment a global 32-bit integer (you create) 

by 1 every time timer 2’s interrupt function is called. Pass this count variable to the 

SetLEDRowsOnOff(int16_t rows) function to display the least significant 5 bits of your 

count variable to the five LED rows. This is similar to what you coded to test your 

SetLEDRowsOnOff(int16_t rows) function in exercise 1. Compile, download to the DSP 

and verify that indeed the LED rows are counting in binary. Add one more item to this code as 

an exercise to see the use of bitwise operators in C. Calling the ReadSwitches(void) 

function inside an “if” statement’s condition and using the bitwise C operator &, check if push 

buttons 2 and 3 are pressed. If both of these push buttons are pressed, stop incrementing the 

global count integer. If one or both are released, continue counting. Again, compile and 

download to the DSP. When your code is working, demonstrate your application to your TA.  

Exercise 3: Breakpoints and Watch Windows 
Starting with the code you just finished, we want to experiment with adding breakpoints to your code 

and using the “Expressions window” to edit the values of your variables.  

1. In your previous code (with the DSP halted), put your cursor over the integer variable that you 

are incrementing. You should see that the value of the variable appears. Run your code, halt it, 

and again put your cursor over the variable to confirm that it changes. 

2. An easier method than using the cursor repeatedly is to add the variable to the Expressions 

window. When the DSP is halted, the Expressions window displays the current value of each 

variable in the Expressions window. To add your counting integer variable to the Expressions 

window, highlight the variable and then right-click, then select “Add Watch Expression…”. 

The variable will appear in the Expressions window with the current value of the variable. The 

Expressions window dialog is also found under the View menu. 



ME 461  7 

3. Next play a bit with adding breakpoints and single stepping through a section of code. The code 

you have written to this point is very small. Add the following nonsense code to allow for easy 

use of breakpoints and code stepping. At the top of your C-file, but below the #includes, add 

the following global variables: 
  float x1 = 6.0; 
  float x2 = 2.3; 
  float x3 = 7.3; 
  float x4 = 7.1; 
 

Then inside your CPU timer 2 interrupt function add this nonsense code: 
  x4 = x3 + 2.0; 
  x3 = x4 + 1.3; 
  x1 = 9 * x2; 
  x2 = 34 * x3; 
 

4. Build and load your code. Add a breakpoint to your code by double clicking on the left gray 

margin of your source file. A breakpoint is a location where the program will literally halt during 

execution. This allows you to check the values of your variables during operation. After a 

breakpoint, you can single step through your code (F5) and watch the variables update as 

different calculations are performed. You remove breakpoints by again clicking in the left gray 

margin.  

5. If you happened not to receive any compiler errors during any of the above exercises, you 

should intentionally add some errors to your code so that you will see how CCS will alert you 

during the build process. Try double clicking on the error message in the console window. The 

editor will then take you to the line of code that has the error. 

Exercise 4 
Still using the code from Exercise 2 and 3 make a few modifications. For many of our lab assignments 

we will want to have at least one of our timers running at a fast periodic rate. Most of the time that will 

be somewhere between a period of 1ms to 5ms. I would not be surprised though, if some of your projects 

will require you to run code at an even faster rates and the F28379D can definitely handle periodic rate 

of 0.1ms to 0.02ms. For this exercise, use a period of 1ms. which can also be stated as a sample 

frequency of 1kHz. Change CPU Timer 2’s period to 1ms in order that CPU Timer 2’s interrupt function 

is called once every millisecond. 

The F28379D can do a huge number of instructions every 1ms, but there are some things you do not 

want the processor performing every 1ms. For example, the printing to Tera Term. If we printed every 

1ms our eyes would not be able to see all the text spilling to the screen. Also, calling the 

SetLEDRowsOnOff(int16_t rows) function every 1ms would cause a blur if LED changes. Add 

code to your CPU Timer 2 interrupt function to only print every 100th time the function is called. The 

% (mod) operator is perfect for this. Mod returns the remainder of an integer divided by another integer. 

i.e. (56 % 5) = 1. So, using the int32_t integer that you are incrementing every time in the timer interrupt, 



ME 461  8 

write an if statement with a % (mod) condition that causes the if statement to be true every 100th time 

in the timer interrupt. Inside this if statement, perform all code that makes sense to run at the slower 

rate.  

Demo this to your TA.  

Lab Checklist 
1. Demonstrate your first application that continually checks the status of the four pushbuttons 

and displays their current state on the five LED rows. One row should always be off since there 

are only four push buttons. 

2. Demonstrate your second application that updates a counter every quarter second and outputs 

the least significant 5 bits of the count to the five LED rows. The count should stop if both 

pushbuttons 2 and 3 are pressed and resume when one or both of them are released. 

3. Demonstrate that you know how to use Breakpoints and the Watch Window to debug your 

source code. 

4. Demonstrate your 1ms timer period code working. 

5. For your lab submission submit your working commented code to your Box folder in a 

subfolder named “Lab2”. Take time to add comments explaining what you understand is 

happening in the code you wrote and the functions in which your code is running. Please make 

it obvious in your submission which code is for each exercise. I do not want short, hard to 

understand, comments. Instead, I would like short paragraphs explaining the code you wrote. 

6. HowTo Document items: 

a. Anything you learned and need to remember about writing you own functions and 

calling your own functions. (Or anything else you would like to is always good.) 

b. Study the code given, and that you wrote, for using GPIO4, 5, 6, & 7 as inputs for 

sensing if the four pushbuttons are pressed or not pressed. Note the initializations of 

these four GPIOs in the main() function. For the HowTo Document create a section 

titled “Setting up and using a GPIO as an input”. GPIO52 happens to be a GPIO we 

currently do not use in the lab assignments. In this section, describe the code that would 

be needed to setup GPIO52 as an input to read a passive pushbutton type sensor. Then 

what line of code would you write to read if the pushbutton is pressed or not pressed? 

Finally if the signal connected to GPIO52 was actively driven high or low by a device, 

(like an IC, integrated circuit) what would you change in the setup lines of code in 

main()?  



ME 461  9 

c. Take some time to understand bitfields in C better. In your own words, explain what 

bitfields are doing for us in C. For Example here is the bitfield for the GPADAT register: 
struct GPADAT_BITS { // bits description 
     Uint16 GPIO0:1; // 0 Data Register for this pin 
     Uint16 GPIO1:1; // 1 Data Register for this pin 
     Uint16 GPIO2:1; // 2 Data Register for this pin 
     Uint16 GPIO3:1; // 3 Data Register for this pin 
     Uint16 GPIO4:1; // 4 Data Register for this pin 
     Uint16 GPIO5:1; // 5 Data Register for this pin 
     Uint16 GPIO6:1; // 6 Data Register for this pin 
     Uint16 GPIO7:1; // 7 Data Register for this pin 
     Uint16 GPIO8:1; // 8 Data Register for this pin 
     Uint16 GPIO9:1; // 9 Data Register for this pin 
     Uint16 GPIO10:1; // 10 Data Register for this pin 
     Uint16 GPIO11:1; // 11 Data Register for this pin 
     Uint16 GPIO12:1; // 12 Data Register for this pin 
     Uint16 GPIO13:1; // 13 Data Register for this pin 
     Uint16 GPIO14:1; // 14 Data Register for this pin 
     Uint16 GPIO15:1; // 15 Data Register for this pin 
     Uint16 GPIO16:1; // 16 Data Register for this pin 
     Uint16 GPIO17:1; // 17 Data Register for this pin 
     Uint16 GPIO18:1; // 18 Data Register for this pin 
     Uint16 GPIO19:1; // 19 Data Register for this pin 
     Uint16 GPIO20:1; // 20 Data Register for this pin 
     Uint16 GPIO21:1; // 21 Data Register for this pin 
     Uint16 GPIO22:1; // 22 Data Register for this pin 
     Uint16 GPIO23:1; // 23 Data Register for this pin 
     Uint16 GPIO24:1; // 24 Data Register for this pin 
     Uint16 GPIO25:1; // 25 Data Register for this pin 
     Uint16 GPIO26:1; // 26 Data Register for this pin 
     Uint16 GPIO27:1; // 27 Data Register for this pin 
     Uint16 GPIO28:1; // 28 Data Register for this pin 
     Uint16 GPIO29:1; // 29 Data Register for this pin 
     Uint16 GPIO30:1; // 30 Data Register for this pin 
     Uint16 GPIO31:1; // 31 Data Register for this pin 
}; 
 

Each of the values in the Bitfield, GPIO0, … , GPIO24, etc can only be set to 0 or 1 

because each GPIO is given only 1 bit (:1). (0 sets the GPIO to low or GND. 1 sets the 

GPIO to high or 3.3V.) If GPIO2 for example is set to 5, the code would compile, but 

it would be the same as setting GPIO2 to 1 because only the bottom bit (bit 0) is looked 

at in the assignment statement. So answer this question where the “.all” statement is 

the entire 32-bit register and the Bitfield elements only access one bit of the register. 

After answering this below question, would you say the Bitfield method is a bit easier 

to understand?  

Using bitfields, we could check if two bits where set in the GPADAT register with the 

following if statement:  
if ((GpioDataRegs.GPADAT.bit.GPIO12 == 1) && 
(GpioDataRegs.GPADAT.bit.GPIO13==1)) { 
     // do something 
} 
 

How could you perform this same check using the GPADAT.all, entire 32-bit GPADAT 

register? Note the other bits in the GPADAT register could be 1 so your if condition 

will have to read GPADAT.all and clear (or mask) all the other bits besides 12 and 13. 



ME 461  10 

d. One more Bitfield question to answer so you can better remember how to use them in 

coming labs. Here is another Bitfield we may use this semester and it is for the 

ADCSOC1CTL register. The F28379D processor has some 16-bit registers and some 

32-bit registers. Counting the used bits in this Bitfield, is ADCSOC1CTL 16-bits or 32-

bits? Notice that all elements are unsigned. What is the largest value that can be 

assigned to ACQPS, CHSEL and TRIGSEL. 

struct ADCSOC1CTL_BITS { // bits description 
     Uint16 ACQPS:9; // 8:0 SOC1 Acquisition Prescale 
     Uint16 rsvd1:6; // 14:9 Reserved 
     Uint32 CHSEL:4; // 18:15 SOC1 Channel Select 
     Uint16 rsvd2:1; // 19 Reserved 
     Uint16 TRIGSEL:5; // 24:20 SOC1 Trigger Source Select 
     Uint16 rsvd3:7; // 31:25 Reserved 
}; 


	Prelab Questions
	Goals
	GPIO Reference
	Exercise 1: Code Composer Introduction
	Exercise 2: Green Board Buttons
	Exercise 3: Breakpoints and Watch Windows
	Exercise 4
	Lab Checklist

