
ME 460: IND US TR IAL CON TROL SYS TEMS

Last updated: 4.9.19
By: Tyler Matijevich

Page 1/6 B&R Automation Studio

Lab 8: Programming with B&R Automation Studio

Introduction

Throughout this course, we’ve been working with transfer functions in the s domain representing differential

equations in the continuous-time domain. For instance, in Lab 3 we learned about the PID controller defined as

𝐶𝑃𝐼𝐷(𝑠) = 𝑘𝑝 +
𝑘𝑖

𝑠
+ 𝑘𝑑𝑠. Later in Lab 7 we approximated the true derivative term with a proper transfer function

𝐶𝑣𝑓(𝑠) =
500𝑠

𝑠+500
 for velocity feedback. In this lab, we want to consider what is actually happening when we create

and execute these s domain transfer functions in Simulink.

Each time a controller is constructed in Simulink, it is built and downloaded to the B&R X20 Controller. The

B&R X20 Controller, like any other processing unit, is a digital computer (there are analog computers out there
but none to the scale which can compute complex control algorithms). This means the controller is only executing

your control law at fixed intervals in time, i.e. the sample period. This sample period has been one millisecond

for the whole semester. So how does the controller execute the differential equation 𝑢𝑃𝐼𝐷(𝑡) = 𝑘𝑝𝑒(𝑡) +

 𝑘𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘𝑑 �̇�(𝑡) ?

The short answer is, it doesn’t. Behind the scenes when you build your control algorithm in Simulink, all

continuous transfer functions are converted to discrete transfer functions according to the sample period. A

discrete-time transfer function is a transfer function in the z domain, which you may remember from your ME

360 course. This course is focused on continuous-time systems, so we will not go into many details of discrete

time systems.

Instead of relying on Simulink to build our discrete transfer functions, this lab presents a procedure for

approximating the discrete transfer functions and directly programming the discrete-time controller dynamics in

B&R Automation Studio.

Objectives

• Use the Tustin approximation (trapezoidal rule) to approximate the discrete time transfer function(s) of your

control algorithm.

• Complete an introduction to B&R Automation Studio by running default code to test open-loop control of

the XY Stage and reference trajectory generation.

• Use your approximated discrete transfer functions to program the PID controller in Structured Text.

Experiment

Discrete Time Transfer Functions:

A discrete-time controller will not have the same transfer function as a continuous-time controller. But, a

continuous-time controller can be translated into a discrete-time controller, i.e. its Discrete Equivalent. For this

lab, use the Tustin approximation:

𝑠 ↔
2

𝑇

𝑧 − 1

𝑧 + 1

ME 460: IND US TR IAL CON TROL SYS TEMS

Last updated: 4.9.19
By: Tyler Matijevich

Page 2/6 B&R Automation Studio

𝑇 is the sample period, e.g. one millisecond for the B&R X20 Controller. Thus, you can substitute 𝑠 in the

continuous-time transfer function with this Discrete Equivalent. For example, the discrete equivalent of the

integrator using this approximation is as follows.

𝑌(𝑠)

𝑋(𝑠)
=

1

𝑠
 ↔

𝑌(𝑧)

𝑋(𝑧)
=

𝑇

2

𝑧 + 1

𝑧 − 1

Instead of representing a continuous-time differential equation, the discrete transfer function now represents a

discrete-time Difference Equation:

𝑦[𝑘 + 1] − 𝑦[𝑘] =
𝑇

2
(𝑥[𝑘 + 1] + 𝑥[𝑘])

This is the Tustin approximated discrete equivalent of 𝑦(𝑡) = ∫ 𝑥(𝑡)𝑑𝑡. It can also be represented as:

𝑦[𝑘] = 𝑦[𝑘 − 1] +
𝑇

2
(𝑥[𝑘] + 𝑥[𝑘 − 1])

Taking a closer look, you should notice this is simply the trapezoidal rule for integration, hence why the Tustin

approximation is often called the trapezoidal rule. For small sample periods 𝑇 (one millisecond), this

approximation is quite accurate.

Figure 1: Trapezoidal Approximation for Integration

B&R Automation Studio:

Automation Studio is the integrated development environment (IDE) for all B&R controllers. Though we

have not directly used Automation Studio yet, the Simulink models that are built are part of a bigger

Automation Studio project that is all together downloaded onto the controller (this is done in the background

when you see the code generation progress pop-up after click Build).

Automation Studio uses several text-based languages to program with including C and C++, but the most

commonly used language is Structured Text. Structured Text is very similar to languages like C but has one

major difference in that variables assignments are performed with a “:=” instead of just “=”. You will see

examples of this in the default code as well as other syntax rules. Your job will be to write the portion of the

code corresponding to the closed-loop control algorithm we completed last lab, PI control with velocity

feedback, in Structured Text.

ME 460: IND US TR IAL CON TROL SYS TEMS

Last updated: 4.9.19
By: Tyler Matijevich

Page 3/6 B&R Automation Studio

Procedure

Getting Started:

1. Turn on the B&R X20 Controller by flipping the breaker switch.

2. Run Automation Studio by searching ‘B&R Automation Studio 4.3 English’ or finding the icon on the

desktop.

3. Acknowledge any licensing pop-ups by clicking OK.

4. Choose ‘AS_HydroLabs’ from the recent projects list. If you don’t see any recent projects, you can located

the project .apj file in ‘C:\BRprojects\bnr_repo\AS_HydroLabs\AS_HydroLabs.apj’.

5. The left pane shows the Logical View. Expand the Student folder and then further expand ProgLab8.

Figure 2: Logical View, Student Folder

6. Open Main.st by double-clicking the file. This is the Structured Text program you will be working with.

Notice all the code located within _Cyclic. This code is executed every one millisecond. You control

algorithm will be placed here.

7. Look for the IF and ELSE conditions in Main.st. This is how we will switch between open-loop and closed-

loop control based on the flagOpenLoop variable. The open-loop control algorithm is given, where should

your closed-loop control algorithm go?

8. Open Variables.var by double-clicking the file. All the variables used by Main.st are declared and

initialized in this variable files (aside from a few global variables). Many variables have already been

defined for you, and you should not change these. You will use several of these variables, such as kp_x and

ki_x. You will also create your own variables to use. Find the variable example. This is where you should

create your new variables. To practice, right-click the variable example and choose ‘Add Variable’, create

the variable error_x and make the type an LREAL (double/64-bit floating type). The initial value is zero

when the value entry is left blank.

Figure 3: Variables.var example Variable

9. Additionally, go ahead and set the PID gain values for both axes based on your final tuned gains from last

lab. Assign this in the values column to the PID gain variables already created for you.

10. getReferences is a sub-routine to generate reference signals ref_x and ref_y. Use these variables as your

reference values.

11. measurePositions is a sub-routine to measure the current position of each axis and assigns the values to

pos_x and pos_y. Use these values for your current position.

ME 460: IND US TR IAL CON TROL SYS TEMS

Last updated: 4.9.19
By: Tyler Matijevich

Page 4/6 B&R Automation Studio

12. copyToGlobals is a sub-routine that simply records values to be uploading to Simulink in order to view

with the scope blocks.

Uploading to Simulink Scopes:

1. Copy the file ‘Lab8_ScopeUpload.slx’ from ‘N:/HydraulicsLab/ME460’ to your folder on the C:\ drive:

‘C:\ME460_SPXX\ABX\Lab8’.

2. Run MATLAB and change your workspace to your folder on the C:\ drive. Start Simulink by opening the

.slx file.

3. There is nothing you have to do with this Simulink model other than Build once. Build the Simulink model

and once completed, Connect to Target.

4. You should see on the encoder scopes that the square wave reference signals appear in blue.

5. As you develop your code in Automation Studio, you will only have to Connect and Disconnect this

Simulink model, you only had to Build once.

Watch Window:

1. You may leave the Simulink model connected. Go back to Automation Studio and right-click on ProgLab8,

choose ‘Open’ then ‘Watch’. You should see a small handful of more important variables from the default

Structured Text code. This Watch window allows you to read and write to these variables while the

controller is running.

Figure 4: Opening the Watch Window

2. Position the windows on your monitor so that you can see the Simulink model, both encoder scopes, and

the Automation Studio Watch window.

3. Find the variables flagSquareReference. Change the value to FALSE by entering 0 into the values column

of the watch window. What happens in your Simulink scopes?

4. Change flagOpenLoop to TRUE. Change the value of uOL_x or uOL_y to 0.7. In your Simulink model

make sure to click the Run pushbutton. Hold down on the dead-mans-switch with your thumb. What

happens?

5. Zero the axes using the open-loop control and then click the Halt pushbutton in Simulink to reset the

encoder values. Switch back to closed-loop control. Hold down the dead-mans-switch and click the Run

pushbutton in Simulink. What happens?

Program the Closed-Loop Algorithm:

1. Create the LREAL variables error_x and error_y (or name them something similar).

2. Write a statement to assign your error variables in the closed-loop section of main.st (you must use the

given reference and position variables).

3. Create the LREAL variables proportional_x, integral_x, and derivative_x, or something similar. Do the
same for the y axis. You will need to assign these variables according to the control law. Then, you should

have the statement:

ME 460: IND US TR IAL CON TROL SYS TEMS

Last updated: 4.9.19
By: Tyler Matijevich

Page 5/6 B&R Automation Studio

u_x := proportional_x + integral_x + derivative_x;

This should replace the existing lines of code:

Figure 5: Assign Closed-Loop Control Values

4. You must use u_x and u_y to assign your final control value.

5. Use variables like error_x_old to represent values like e[k-1]. What do you have to do at the very end of

your closed-loop algorithm to update “old” values for the next sample?

6. The rest is up to you, check with your TA to see if your written program is on the right track.

7. One important note: as you get further along in your development you will notice the if statement on the

Boolean variable triggerLab8. This if statement should be used to zero any integral windup. Ask your TA

how you can perform anti-integral windup correctly.

Figure 6: Zero Integral Windup

Run Your Program:

1. To compile and download your newly written program in Automation Studio, simply click the Transfer

icon in the top toolbar.

Figure 7: Transfer Icon

2. If there are any errors, look through the Outputs dialog at the bottom to debug them. Ignore any warnings.

If there are no errors, you should get a pop-up that will now allow you to Transfer, click ‘Transfer’.

Figure 8: Outputs Results with Debug Messages

3. Re-connect your Simulink model if it needed.

4. Use open-loop control to align each axis in the center.

5. Use the Halt pushbutton to zero the encoders when centered.

ME 460: IND US TR IAL CON TROL SYS TEMS

Last updated: 4.9.19
By: Tyler Matijevich

Page 6/6 B&R Automation Studio

6. While halted, use your thumb to hold down the dead-mans-switch and then you may click the Run
pushbutton.

7. Test out your closed-loop algorithm on the circle trajectory. You may tune your gains in the watch window

if necessary. Make use of the disable_x and disable_y flags to only perform closed-loop control on one of

the axes.

Report Questions

1. How did your previously tuned PID gains perform with the Tustin approximation when programmed in

Automation Studio? What is the difference in performance between the Automation Studio program and

the previous lab’s Simulink program?

2. Are there any advantages to using text-based languages like Structured Text to program control

algorithms compared to graphic programming as in Simulink?

3. What are some other Discrete Equivalent approximations that could be used to translate continuous-time

transfer functions?

