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ME 460 Lab 1 
Dynamic Simulation using Simulink and MATLAB 

1: Introduction 
In this lab you will learn how to use Simulink to model and simulate dynamical systems. Simulink is 
integrated with MATLAB and uses a block diagram environment to represent dynamic systems. You 
can think of Simulink as a graphical programming tool. Instead of writing large amounts of code, you 
can simply drag-and-drop predefined blocks into the model window and connect the inputs and outputs 
to create a simulation. 

Timing, numerical methods, and other settings can be set up in the system configuration before running 
the simulation in Simulink. Progress of the simulation can be monitored while running, and the final 
results can be exported to MATLAB for post-processing when complete. 

2: System Simulation Basics 

2.1: Required Steps to Simulate a System 
1. Determine the governing equation(s) of the system. 

2. Draw out the block diagram representing the system dynamics on paper. 

3. Create the corresponding block diagram in Simulink. 

4. Add additional source and sink blocks to manage the inputs and outputs. 

5. Setup the simulation parameters and run the simulation. 

6. Display and analyze the results. 

Steps 1 and 2 were completed in the Prelab assignment. The remaining steps are explained 
throughout the rest of the lab. 

2.2: Structure of a Block Diagram in Simulink 
An overall block diagram in Simulink typically has the form shown in Figure 1. This figure only 
represents the general high-level form of a block diagram. It does not include many more detailed 
blocks within the system and different options for source and sink blocks. 

 

 
Figure 1: Typical Block Diagram Model in Simulink 

 

The system block defines all the system dynamics you want to simulate. Depending on the 
complexity of the system, this block may consist of one or more predefined blocks from the 
Simulink library. 



If the system dynamics has a forced input, you will need to include a source block to supply a source 
which creates the desired input. The Simulink library contains several source blocks to generate a 
forced input such as a step input, ramp input, sine wave, or square wave. 

The output signals of the system can be displayed or stored using a sink block. Again, the Simulink 
library provides a variety of sink blocks to choose from. For example, the To Workspace block 
stores the signal history of the specific output in the MATLAB workspace. 

3: Exercise 1 – Spring-Mass-Damper System Comparison 
This exercise will ask you to model and simulate the spring-mass-damper cart from the Prelab. With 
the block diagram in your answer to Question 2 of the Prelab assignment, a corresponding block 
diagram can be created in Simulink. Figure 2 shows what the block diagram will look like in Simulink. 

 

 
Figure 2: Simulink Block Diagram of Spring-Mass-Damper 

3.1: Create New Simulink Model 
First run MATLAB, then start Simulink by typing simulink in the MATLAB command window. 

 >> simulink 

This can also be done in MATLAB’s home toolbar by clicking New, then Simulink model. The 
Simulink start page will open where you can select from a variety of model templates. To begin 
from scratch, simply click the blank model. 

3.2: Add Blocks from Libraries 
There are two ways to add blocks from the built-in libraries: 

1. Open the library browser , find the block in the corresponding library, and drag-and-
drop the block into your model window. 

2. Click in the white space of the model window to invoke a search bar, search for the block, 
and hit enter. 

The second method is much faster and more convenient when the block name is known. 

Add two sum blocks, two integrator blocks, and two gain blocks to your model. These are found in 
the Simulink/Math Operations and Continuous libraries. Arrange the blocks as shown. Click on a 
block and use CTRL+R and CTRL+SHIFT+R to rotate clockwise and counterclockwise. 

Add Scope, To Workspace, and Constant blocks to your model. These are found in the 
Simulink/Sources and Sink libraries. The To Workspace block takes the connect signal’s history and 



stores it in the MATLAB workspace when the simulation finishes. The scope block displays the 
connected signal while running. 

3.3: Connecting Blocks 
Connections are made at each block’s inward and outward arrows. Most connections can be made 
by clicking and dragging arrows along the desired route. To branch off, right-click and drag from 
the existing connection. Complete the connections shown in Figure 2. 

3.4: Set Block Parameters 
Set the −𝑏𝑏 𝑚𝑚⁄  gain block value to −2 by double-clicking on the block. Set the −𝑘𝑘 𝑚𝑚⁄  gain block 
to −40. The first integrator outputs velocity. Its initial condition should be zero. The second 
integrator outputs position which should have an initial condition of 100 mm. Set its initial 
condition value to 0.1. Set the constant input to zero (𝑓𝑓(𝑡𝑡) = 0) to simulate an un-forced system. 
Change the variable name of the To Workspace block to Position. 

3.5: Setup Model Configuration Parameters 

Click the gear icon  to pull up the model configuration parameters. In the solver settings section, 
change the solver to be ode45 instead of auto. Leave the Type as Variable-step. Click the arrow next 
to Solver details to view more settings. Change the Max step size to 0.005 and the Relative tolerance 
to 1e -5. Click OK to apply the changes. 

3.6: Run Simulation and Plot Results 
Run the simulation by clicking the play button. You can view the signal output while running by 
clicking the scope block and opening the scope’s plot window. The signal output is also available 
in the MATLAB workspace via the to workspace block. Go to the MATLAB command prompt and 
type: 

 >> plot(position.time, position.data) 

3.7: Save the Block Diagram 
Save your model as a .slx file in your bench’s directory, ‘C:\ME460_ABx\Lab1’. 

Before proceeding, you should become familiar with other blocks available in the libraries. Most 
blocks used in this lab can be found in Simulink/Sources, Sinks, Commonly Used Blocks, and Math 
Operations. Block functionalities are mostly obvious by name, but to understand its use, double-
click the block and then click help for a detailed explanation. 

3.8: Inverse Laplace Transform 
Compare the Simulink simulation with MATLAB’s inverse Laplace transform. Take the inverse 
Laplace transform of 𝑋𝑋(𝑠𝑠) using MATLAB’s impulse() function. Here, 𝑋𝑋(𝑠𝑠) is the Laplace 
transform of position of the mass-spring-damper system. The impulse() function computes the 
impulse response in the time domain of the given transfer function. Since the Laplace transform of 
𝛿𝛿(𝑡𝑡) is 1, this function simply computes the Inverse Laplace Transform 𝑥𝑥(𝑡𝑡) of the given transfer 
function 𝑋𝑋(𝑠𝑠). 

Write the following code in a MATLAB script file and run it multiple times with varying damping 
constant. 

m = 1;     % mass 
k = 40;      % spring constant 



b = 2;      % damping constant 
x0 = 0.1;      % initial position 
v0 = 0;      % initial velocity  
T = linspace(0,10,200);   % time vector 
num = [0,m*x0,b*x0+m*v0];  % TF numerator 
den = [m, b, k];     % TF denominator 
x = impulse(num,den,T);   % inverse laplace 
plot(T,x)      % plot results 

Compare the Simulink plots to the plots generated with MATLAB’s impulse() function. 

4: Exercise 2 – Linear Approximation Comparison 
Build a Simulink model corresponding to the block diagram from Question 4 of the Prelab. Note the 
equations of motion have a nonlinearity. Use the Trigonometric Function block from the Math 
Operations library. 

This block diagram is very similar to Exercise 1. The previous gains −𝑘𝑘 𝑚𝑚⁄  and −𝑏𝑏 𝑚𝑚⁄  are now −𝑔𝑔 𝑙𝑙⁄  
and −𝑏𝑏 𝑚𝑚𝑙𝑙2⁄  . Additionally, there is a sin(𝜃𝜃) block inserted just before the −𝑔𝑔 𝑙𝑙⁄  gain. This is because 
both systems are second order (they contain two integrators). Make the necessary modifications to 
Exercise 1’s .slx file and save it as a new Simulink model. Run the simulation and plot your results. 

Now consider a linear approximation of 𝜃𝜃 for sin𝜃𝜃. You can comment through a block by clicking on 
the block and using CTRL+SHIFT+Y. Modify your Simulink model accordingly. 

Run the linearized simulation with different initial conditions and compare it to the original nonlinear 
simulation. You can select all blocks, copy, and paste them to create a second simulation loop in the 
same Simulink model. Try plotting both linearized and nonlinear results in the same plot. 

5: Exercise 3 – Hydraulic Motor System Comparison 
Now you will develop nonlinear and linearized Simulink models of a hydraulic motor system similar 
to what is on the hydraulic bench. This system is shown in Figure 3 and the equations of motion will be 
described below. 

From the setup in Figure 3, there are two states in the system: 

1. The motor speed 𝜔𝜔. 

2. The pressure downstream of the valve 𝑃𝑃𝑑𝑑.  

The two inputs are the valve command 𝑢𝑢𝑣𝑣, and the pressure upstream of the valve 𝑢𝑢𝑃𝑃𝑢𝑢. The relationship 
between torque applied 𝑇𝑇 to the hydraulic motor and the motor’s speed 𝜔𝜔 can be captured well with a 
linear first order model; see Eq. (1). 

 

 𝐽𝐽�̇�𝜔 = 𝑇𝑇 − 𝑏𝑏𝜔𝜔 (1) 
 

𝐽𝐽 is the motor inertia and 𝑏𝑏 is the friction coefficient. The speed of the hydraulic motor 𝜔𝜔 and the flow 
rate through the motor 𝑞𝑞𝑚𝑚 are related by the motor displacement 𝐷𝐷; see Eq. (2). 

 

 𝑞𝑞𝑚𝑚 = 𝐷𝐷𝜔𝜔 (2) 
 



 

 
Figure 3: Hydraulic Motor System with Valve Control 

 

Several assumptions have been made such as ignoring the leakage and static friction in the hydraulic 
motor. To consider leakage, a more complex relationship between flow rate and motor speed is required. 
These effects play a minor role in the physical system’s behavior and are not necessary for deriving an 
adequate model of the hydraulic motor system. It is important to acknowledge what assumptions you 
are making when modeling a physical system.  

The torque applied to the motor 𝑇𝑇 is a function of the pressure drop across the motor (downstream 
pressure 𝑃𝑃𝑑𝑑). The downstream pressure 𝑃𝑃𝑑𝑑 has a dynamic relationship with the value flow rate 𝑞𝑞𝑣𝑣 and 
the motor flow rate 𝑞𝑞𝑚𝑚 as shown in Equations (3) & (4). 

 

 
�̇�𝑃𝑑𝑑 =

𝛽𝛽
𝑉𝑉

(𝑞𝑞𝑣𝑣 − 𝑞𝑞𝑚𝑚) 
(3) 

 

 𝑇𝑇 = 𝐷𝐷𝑃𝑃𝑑𝑑  (4) 
 

𝑉𝑉 is the volume of oil inside the hose connection the valve to the motor and 𝛽𝛽 is the bulk modulus of 
the oil (a measure of oil’s resistance to compression). When the flow through the valve and the more 
remain equal, the downstream pressure remains constant. 

The last component of the system is the valve. The valve is actuator with a control signal 𝑢𝑢𝑣𝑣 to vary the 
downstream pressure (and motor speed) for a given upstream pressure 𝑢𝑢𝑃𝑃𝑢𝑢. Equation (5) relates these 
values to the flow rate through the valve 𝑞𝑞𝑣𝑣. 

 

 𝑞𝑞𝑣𝑣 = 𝑘𝑘𝑢𝑢𝑣𝑣�𝑢𝑢𝑃𝑃𝑢𝑢 − 𝑃𝑃𝑑𝑑  (5) 

 

𝑘𝑘 is the coefficient relating the valve control signal to valve opening. This equation is known as the 
orifice equation and can be derived from Bernoulli’s equation1. 

Combine Equations (1) - (5) into a system of two nonlinear dynamic equations. Linearize the system of 
equations about the operating point: 𝑢𝑢𝑣𝑣0, 𝑢𝑢𝑃𝑃𝑢𝑢0, 𝑃𝑃𝑑𝑑0, 𝜔𝜔0. Using the parameters from Table 1, build a 
Simulink model of both nonlinear and linearized versions of the hydraulic motor system. Use the same 
                                                     
1 White, F.M., Fluid Mechanics, 5th ed. McGraw-Hill, Boston: 2013. 



configuration parameters as the previous exercises. Simulate both versions with an upstream pressure 
of 2.75 kPa and a constant valve control signal of 2.5 V. 

 

Table 1: Hydraulic Motor System Parameters 

Bulk Modulus 𝛽𝛽 240 MPa 
Hose Volume 𝑉𝑉 30 cm3 

Displacement 𝐷𝐷 4 cm3/rad 
Friction Coefficient 𝑏𝑏 1 Nms 

Motor Inertia 𝐽𝐽 0.5 kgm2 
Valve Coefficient 𝑘𝑘 2 
Control Set-Point 𝑢𝑢𝑣𝑣0 2.5 V 

Upstream Pressure 𝑢𝑢𝑃𝑃𝑢𝑢 2.75 MPa 
Initial Downstream 

Pressure 
𝑃𝑃𝑑𝑑0 0.5 MPa 

Initial Speed 𝜔𝜔0 0 rad/s 

6: Report Questions 
Create a lab report addressing all the following: 

1. Compare the plots from Simulink's simulation and from MATLAB’s impulse function in 
Exercise 1. What are the differences? Should they be similar or not? 

2. In Exercise 2 (Section 4), at what initial condition does the linearized model poorly approximate 
the original nonlinear model? 

3. How are the observations you made in Question 2 (above) relevant to controller design? 

4. In Exercise 3, how do the nonlinear and linearized models compare? How do they compare 
when changing the upstream pressure? 

5. Save your plots and simulation files to your bench’s directory ‘C:\ME460_ABx\Lab1’. 

6. Include the resulting plots from each exercise in your lab report: 

a. Exercise 1: Simulink plot and MATLAB plot 

b. Exercise 2: Output signal of linearized and nonlinear systems 

c. Exercise 3: One plot with both nonlinear and linearized pressure outputs and one plot 
with both nonlinear and linearized speed outputs 

7. Include any additional screenshots or plots you find relevant. 
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