
Last Updated: 6.5.2023

ME 460 Lab 1
Dynamic Simulation using Simulink and MATLAB

1: Introduction
In this lab you will learn how to use Simulink to model and simulate dynamical systems. Simulink is
integrated with MATLAB and uses a block diagram environment to represent dynamic systems. You
can think of Simulink as a graphical programming tool. Instead of writing large amounts of code, you
can simply drag-and-drop predefined blocks into the model window and connect the inputs and outputs
to create a simulation.

Timing, numerical methods, and other settings can be set up in the system configuration before running
the simulation in Simulink. Progress of the simulation can be monitored while running, and the final
results can be exported to MATLAB for post-processing when complete.

2: System Simulation Basics

2.1: Required Steps to Simulate a System
1. Determine the governing equation(s) of the system.

2. Draw out the block diagram representing the system dynamics on paper.

3. Create the corresponding block diagram in Simulink.

4. Add additional source and sink blocks to manage the inputs and outputs.

5. Setup the simulation parameters and run the simulation.

6. Display and analyze the results.

Steps 1 and 2 were completed in the Prelab assignment. The remaining steps are explained
throughout the rest of the lab.

2.2: Structure of a Block Diagram in Simulink
An overall block diagram in Simulink typically has the form shown in Figure 1. This figure only
represents the general high-level form of a block diagram. It does not include many more detailed
blocks within the system and different options for source and sink blocks.

Figure 1: Typical Block Diagram Model in Simulink

The system block defines all the system dynamics you want to simulate. Depending on the
complexity of the system, this block may consist of one or more predefined blocks from the
Simulink library.

If the system dynamics has a forced input, you will need to include a source block to supply a source
which creates the desired input. The Simulink library contains several source blocks to generate a
forced input such as a step input, ramp input, sine wave, or square wave.

The output signals of the system can be displayed or stored using a sink block. Again, the Simulink
library provides a variety of sink blocks to choose from. For example, the To Workspace block
stores the signal history of the specific output in the MATLAB workspace.

3: Exercise 1 – Spring-Mass-Damper System Comparison
This exercise will ask you to model and simulate the spring-mass-damper cart from the Prelab. With
the block diagram in your answer to Question 2 of the Prelab assignment, a corresponding block
diagram can be created in Simulink. Figure 2 shows what the block diagram will look like in Simulink.

Figure 2: Simulink Block Diagram of Spring-Mass-Damper

3.1: Create New Simulink Model
First run MATLAB, then start Simulink by typing simulink in the MATLAB command window.

 >> simulink

This can also be done in MATLAB’s home toolbar by clicking New, then Simulink model. The
Simulink start page will open where you can select from a variety of model templates. To begin
from scratch, simply click the blank model.

3.2: Add Blocks from Libraries
There are two ways to add blocks from the built-in libraries:

1. Open the library browser , find the block in the corresponding library, and drag-and-
drop the block into your model window.

2. Click in the white space of the model window to invoke a search bar, search for the block,
and hit enter.

The second method is much faster and more convenient when the block name is known.

Add two sum blocks, two integrator blocks, and two gain blocks to your model. These are found in
the Simulink/Math Operations and Continuous libraries. Arrange the blocks as shown. Click on a
block and use CTRL+R and CTRL+SHIFT+R to rotate clockwise and counterclockwise.

Add Scope, To Workspace, and Constant blocks to your model. These are found in the
Simulink/Sources and Sink libraries. The To Workspace block takes the connect signal’s history and

stores it in the MATLAB workspace when the simulation finishes. The scope block displays the
connected signal while running.

3.3: Connecting Blocks
Connections are made at each block’s inward and outward arrows. Most connections can be made
by clicking and dragging arrows along the desired route. To branch off, right-click and drag from
the existing connection. Complete the connections shown in Figure 2.

3.4: Set Block Parameters
Set the −𝑏𝑏 𝑚𝑚⁄ gain block value to −2 by double-clicking on the block. Set the −𝑘𝑘 𝑚𝑚⁄ gain block
to −40. The first integrator outputs velocity. Its initial condition should be zero. The second
integrator outputs position which should have an initial condition of 100 mm. Set its initial
condition value to 0.1. Set the constant input to zero (𝑓𝑓(𝑡𝑡) = 0) to simulate an un-forced system.
Change the variable name of the To Workspace block to Position.

3.5: Setup Model Configuration Parameters

Click the gear icon to pull up the model configuration parameters. In the solver settings section,
change the solver to be ode45 instead of auto. Leave the Type as Variable-step. Click the arrow next
to Solver details to view more settings. Change the Max step size to 0.005 and the Relative tolerance
to 1e -5. Click OK to apply the changes.

3.6: Run Simulation and Plot Results
Run the simulation by clicking the play button. You can view the signal output while running by
clicking the scope block and opening the scope’s plot window. The signal output is also available
in the MATLAB workspace via the to workspace block. Go to the MATLAB command prompt and
type:

 >> plot(position.time, position.data)

3.7: Save the Block Diagram
Save your model as a .slx file in your bench’s directory, ‘C:\ME460_ABx\Lab1’.

Before proceeding, you should become familiar with other blocks available in the libraries. Most
blocks used in this lab can be found in Simulink/Sources, Sinks, Commonly Used Blocks, and Math
Operations. Block functionalities are mostly obvious by name, but to understand its use, double-
click the block and then click help for a detailed explanation.

3.8: Inverse Laplace Transform
Compare the Simulink simulation with MATLAB’s inverse Laplace transform. Take the inverse
Laplace transform of 𝑋𝑋(𝑠𝑠) using MATLAB’s impulse() function. Here, 𝑋𝑋(𝑠𝑠) is the Laplace
transform of position of the mass-spring-damper system. The impulse() function computes the
impulse response in the time domain of the given transfer function. Since the Laplace transform of
𝛿𝛿(𝑡𝑡) is 1, this function simply computes the Inverse Laplace Transform 𝑥𝑥(𝑡𝑡) of the given transfer
function 𝑋𝑋(𝑠𝑠).

Write the following code in a MATLAB script file and run it multiple times with varying damping
constant.

m = 1; % mass
k = 40; % spring constant

b = 2; % damping constant
x0 = 0.1; % initial position
v0 = 0; % initial velocity
T = linspace(0,10,200); % time vector
num = [0,m*x0,b*x0+m*v0]; % TF numerator
den = [m, b, k]; % TF denominator
x = impulse(num,den,T); % inverse laplace
plot(T,x) % plot results

Compare the Simulink plots to the plots generated with MATLAB’s impulse() function.

4: Exercise 2 – Linear Approximation Comparison
Build a Simulink model corresponding to the block diagram from Question 4 of the Prelab. Note the
equations of motion have a nonlinearity. Use the Trigonometric Function block from the Math
Operations library.

This block diagram is very similar to Exercise 1. The previous gains −𝑘𝑘 𝑚𝑚⁄ and −𝑏𝑏 𝑚𝑚⁄ are now −𝑔𝑔 𝑙𝑙⁄
and −𝑏𝑏 𝑚𝑚𝑙𝑙2⁄ . Additionally, there is a sin(𝜃𝜃) block inserted just before the −𝑔𝑔 𝑙𝑙⁄ gain. This is because
both systems are second order (they contain two integrators). Make the necessary modifications to
Exercise 1’s .slx file and save it as a new Simulink model. Run the simulation and plot your results.

Now consider a linear approximation of 𝜃𝜃 for sin𝜃𝜃. You can comment through a block by clicking on
the block and using CTRL+SHIFT+Y. Modify your Simulink model accordingly.

Run the linearized simulation with different initial conditions and compare it to the original nonlinear
simulation. You can select all blocks, copy, and paste them to create a second simulation loop in the
same Simulink model. Try plotting both linearized and nonlinear results in the same plot.

5: Exercise 3 – Hydraulic Motor System Comparison
Now you will develop nonlinear and linearized Simulink models of a hydraulic motor system similar
to what is on the hydraulic bench. This system is shown in Figure 3 and the equations of motion will be
described below.

From the setup in Figure 3, there are two states in the system:

1. The motor speed 𝜔𝜔.

2. The pressure downstream of the valve 𝑃𝑃𝑑𝑑.

The two inputs are the valve command 𝑢𝑢𝑣𝑣, and the pressure upstream of the valve 𝑢𝑢𝑃𝑃𝑢𝑢. The relationship
between torque applied 𝑇𝑇 to the hydraulic motor and the motor’s speed 𝜔𝜔 can be captured well with a
linear first order model; see Eq. (1).

 𝐽𝐽�̇�𝜔 = 𝑇𝑇 − 𝑏𝑏𝜔𝜔 (1)

𝐽𝐽 is the motor inertia and 𝑏𝑏 is the friction coefficient. The speed of the hydraulic motor 𝜔𝜔 and the flow
rate through the motor 𝑞𝑞𝑚𝑚 are related by the motor displacement 𝐷𝐷; see Eq. (2).

 𝑞𝑞𝑚𝑚 = 𝐷𝐷𝜔𝜔 (2)

Figure 3: Hydraulic Motor System with Valve Control

Several assumptions have been made such as ignoring the leakage and static friction in the hydraulic
motor. To consider leakage, a more complex relationship between flow rate and motor speed is required.
These effects play a minor role in the physical system’s behavior and are not necessary for deriving an
adequate model of the hydraulic motor system. It is important to acknowledge what assumptions you
are making when modeling a physical system.

The torque applied to the motor 𝑇𝑇 is a function of the pressure drop across the motor (downstream
pressure 𝑃𝑃𝑑𝑑). The downstream pressure 𝑃𝑃𝑑𝑑 has a dynamic relationship with the value flow rate 𝑞𝑞𝑣𝑣 and
the motor flow rate 𝑞𝑞𝑚𝑚 as shown in Equations (3) & (4).

�̇�𝑃𝑑𝑑 =

𝛽𝛽
𝑉𝑉

(𝑞𝑞𝑣𝑣 − 𝑞𝑞𝑚𝑚)
(3)

 𝑇𝑇 = 𝐷𝐷𝑃𝑃𝑑𝑑 (4)

𝑉𝑉 is the volume of oil inside the hose connection the valve to the motor and 𝛽𝛽 is the bulk modulus of
the oil (a measure of oil’s resistance to compression). When the flow through the valve and the more
remain equal, the downstream pressure remains constant.

The last component of the system is the valve. The valve is actuator with a control signal 𝑢𝑢𝑣𝑣 to vary the
downstream pressure (and motor speed) for a given upstream pressure 𝑢𝑢𝑃𝑃𝑢𝑢. Equation (5) relates these
values to the flow rate through the valve 𝑞𝑞𝑣𝑣.

 𝑞𝑞𝑣𝑣 = 𝑘𝑘𝑢𝑢𝑣𝑣�𝑢𝑢𝑃𝑃𝑢𝑢 − 𝑃𝑃𝑑𝑑 (5)

𝑘𝑘 is the coefficient relating the valve control signal to valve opening. This equation is known as the
orifice equation and can be derived from Bernoulli’s equation1.

Combine Equations (1) - (5) into a system of two nonlinear dynamic equations. Linearize the system of
equations about the operating point: 𝑢𝑢𝑣𝑣0, 𝑢𝑢𝑃𝑃𝑢𝑢0, 𝑃𝑃𝑑𝑑0, 𝜔𝜔0. Using the parameters from Table 1, build a
Simulink model of both nonlinear and linearized versions of the hydraulic motor system. Use the same

1 White, F.M., Fluid Mechanics, 5th ed. McGraw-Hill, Boston: 2013.

configuration parameters as the previous exercises. Simulate both versions with an upstream pressure
of 2.75 kPa and a constant valve control signal of 2.5 V.

Table 1: Hydraulic Motor System Parameters

Bulk Modulus 𝛽𝛽 240 MPa
Hose Volume 𝑉𝑉 30 cm3

Displacement 𝐷𝐷 4 cm3/rad
Friction Coefficient 𝑏𝑏 1 Nms

Motor Inertia 𝐽𝐽 0.5 kgm2
Valve Coefficient 𝑘𝑘 2
Control Set-Point 𝑢𝑢𝑣𝑣0 2.5 V

Upstream Pressure 𝑢𝑢𝑃𝑃𝑢𝑢 2.75 MPa
Initial Downstream

Pressure
𝑃𝑃𝑑𝑑0 0.5 MPa

Initial Speed 𝜔𝜔0 0 rad/s

6: Report Questions
Create a lab report addressing all the following:

1. Compare the plots from Simulink's simulation and from MATLAB’s impulse function in
Exercise 1. What are the differences? Should they be similar or not?

2. In Exercise 2 (Section 4), at what initial condition does the linearized model poorly approximate
the original nonlinear model?

3. How are the observations you made in Question 2 (above) relevant to controller design?

4. In Exercise 3, how do the nonlinear and linearized models compare? How do they compare
when changing the upstream pressure?

5. Save your plots and simulation files to your bench’s directory ‘C:\ME460_ABx\Lab1’.

6. Include the resulting plots from each exercise in your lab report:

a. Exercise 1: Simulink plot and MATLAB plot

b. Exercise 2: Output signal of linearized and nonlinear systems

c. Exercise 3: One plot with both nonlinear and linearized pressure outputs and one plot
with both nonlinear and linearized speed outputs

7. Include any additional screenshots or plots you find relevant.

	1: Introduction
	2: System Simulation Basics
	2.1: Required Steps to Simulate a System
	2.2: Structure of a Block Diagram in Simulink

	3: Exercise 1 – Spring-Mass-Damper System Comparison
	3.1: Create New Simulink Model
	3.2: Add Blocks from Libraries
	3.3: Connecting Blocks
	3.4: Set Block Parameters
	3.5: Setup Model Configuration Parameters
	3.6: Run Simulation and Plot Results
	3.7: Save the Block Diagram
	3.8: Inverse Laplace Transform

	4: Exercise 2 – Linear Approximation Comparison
	5: Exercise 3 – Hydraulic Motor System Comparison
	6: Report Questions

