ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION AND CONTROL

Experiment No. 4
 Modeling and Identification of an Electric Motor using Step Response and Frequency Response Methods

1. CREDITS

Originated: T-C. Tsao and N. R. Miller, October 1995
Last Updated: D. Block, October 2021
2. OBJECTIVE

Measure the steady-state gain K and time constant τ of a motor-generator system using both step response and frequency response data.
3. KEY CONCEPTS
(a) A DC motor may be approximated as a first-order, linear system where the system input is the applied voltage $V_{\text {in }}(t)$ and the system output is motor speed $\omega(\mathrm{t})$.

(b) In this experiment, a motor-generator combination serves as a first-order system with a voltage input $\mathrm{V}_{\text {in }}$ and a voltage output $\mathrm{V}_{\text {out }}$.

| |

(c) The two parameters characterizing a first-order system are the steady-state gain K and the time constant τ.
(d) A linear model can be used even though K varies with input voltage and the system is actually nonlinear. Models are rarely perfect.
(e) We determine K and τ by observing the system response to a known input.
(f) System response is the time history of the system output.
(g) Determining system parameters from measured response data is known as system identification.
(i) A Bode plot of a system can be found by varying the frequency of a sine wave input to the system and measuring the gain and phase-shift between this input and the system output signal.

4. OVERVIEW OF METHODS

In this experiment, we study the steady-state and dynamic characteristics of a DC motor coupled to a DC generator. The DC generator is used as a tachometer to measure the speed of the motor. The motor-generator combination is modeled as a first-order, linear system with steady-state gain K and time constant τ. A first-order, linear system is the simplest type of dynamic system and thus provides a good introduction to important dynamic
system concepts. The first-order system is also important from a practical viewpoint as many real-world systems can be modeled in this manner. The DC motor considered in this experiment is just one such example.

The motor-generator system considered here is of the basic input-output type. The single input is $\mathrm{V}_{\text {in }}$, the voltage applied to motor. The single output is $\mathrm{V}_{\text {out }}$, the voltage produced by the generator. This first-order system may be described in the following ways.

Governing Equation:

$$
\tau \frac{\mathrm{dV}_{\text {out }}}{\mathrm{dt}}(\mathrm{t})+\mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{K}_{\text {in }}(\mathrm{t})
$$

$$
V_{\text {out }}(0)=V_{o}
$$

Transfer Function:

$$
\hat{G}(s)=\frac{K}{\tau s+1}
$$

Steady-state Response: $\quad \mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{K} \mathrm{V}_{\text {in }} \quad \quad \mathrm{V}_{\text {in }}(\mathrm{t})=$ constant, all t
Step Response: $\quad V_{\text {out }}(t)=K\left(V_{0}-V_{\text {in }}\right) \exp (-t / \tau)+K V_{\text {in }} \quad V_{\text {in }}(t)=$ constant, $t \geq 0$
Frequency Response : $\quad \mathrm{V}_{\text {in }}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}), \quad V_{\text {out }}(t)=\frac{K A}{\sqrt{1+(\omega \tau)^{2}}} \cos \left(\omega t-\tan ^{-1}(\omega \tau)\right)$
Our goal is to determine K and τ and compare these measurements with values calculated from a more detailed physical model of the motor-generator system. This more detailed model relates K and τ to other physical parameters that can be independently measured. Based on nominal values reported by the manufacturer, we conclude that K lies between 1.1 and 1.3 and τ lies between 40 ms and 80 ms .

There are many ways to obtain K and τ from observed system behavior. This diversity is good because it puts a wide variety of useful tools at our disposal. This diversity is bad because we must sort out the differences between the various methods and assess the relative merits of each. Our choice is complicated by two real-world problems:
(a) Our model of the system is imperfect.
(b) Our methods of measuring system response are imperfect.

Modeling errors arise from system nonlinearities and higher-order effects; experimental errors arise from noise and measurement uncertainty. Thus, different methods may give different values of K and τ.

5. SYNOPSIS OF PROCEDURE

The digital multimeter, PC-based hardware, and MATLAB software are used to carry out the following measurements.
(a) The steady-state gain of the system is determined by applying a series of input voltages to the motor and measuring the resulting steady-state output voltages of the generator using the digital multimeter. Here, we see that K varies with input voltage indicating that the system is slightly nonlinear.
(b) The step response of the system is studied by making a step change in the input voltage to the motor and sampling the output voltage of the generator as a function of time using the oscilloscope and PC-based dataacquisition system. The system parameters K and τ are then determined from the sampled output voltage waveform using the following four methods.
(i) Locate the time at which the voltage change is 63.2% of the maximum change.
(ii) Plot the observed response together with the predicted response based on guessed values of K and τ; iterate on K and τ until good agreement is achieved.
(c) A Bode plot for a motor-generator system is manually found by applying different frequency sine waves to the system and measuring the gain and phase-shift of the output.

6. PROCEDURE

Important General Information - Please Read Carefully

(a) Always turn off the power supplies when changing connections. Dangling leads can easily contact the metal tabletop creating a short, blowing a fuse, creating an unsafe situation or damaging the equipment.
(b) Disconnect the leads from the instruments when not in use. Connect the instruments last after the wiring is carefully checked.
(c) If your station is missing something, ask your Laboratory Assistant to replace it. Do not take items from other stations.

6.1 Wiring the System

Figure 1 shows how the system is wired.

Detailed Information for Wiring System

A brief summary of the connections is given below.

DAC Output to Power Amplifier

A shielded cable with three banana plugs on each end connects Analog Output Channel 0 to the input of the Power Amplifier (labeled simply "Amplifier" on the patch panel). Red is positive or high, black is negative or low, and white is the shield. At the amplifier end, connect red to red, black to black, and white to white. At the DAC end, connect red to red and both black and white to black.

Amplifier Output to Motor Input

A second shielded cable with three banana plugs on each end connects the output of the power amplifier to the input of the motor. Red is positive or high, black is negative or low, and white is ground. Follow red-black-white color-coding on each end of the cable.

Generator Output to ADC Input

Two banana-plug patch cords connect the generator output to Analog Input Channel 0. On the generator end, orange is positive or high and gray is negative or low. On the analog-input end, red is positive or high and black is negative or low.

Connections to Oscilloscope

The DAC output is routed to Channel 1 of the oscilloscope, and the generator output is routed to Channel 2 so that the system input and output waveforms can both be displayed. Two cables each with a BNC connector on one end and a pair of banana plugs on the other end are used for this purpose. Red-black color-coding is followed.

Connections to Digital Multimeter

A pair of banana-plug patch cords connects the inputs of Analog Channel 0 to the voltage inputs of the multimeter. Red-black color-coding is again observed.

Push Button

The push button is connected to the quarter inch jack on the patch panel in the section labeled "Amp Inhibit".

Figure 1. Wiring diagram and equipment layout for motor-generator system experiment - motor input from analog output.

6.2 Steady-state Gain

6.2.1 Initial Startup

(a) Power on the oscilloscope and digital multimeter. Recall the default oscilloscope settings and display both Channels 1 and 2. Change the time mode to "roll" by pressing the "Main/Delayed" button and selecting the correct setting. Set the vertical scale to $5 \mathrm{~V} / \mathrm{div}$ for Channel 1 and $1 \mathrm{~V} / \mathrm{div}$ for Channel 2 . Set the horizontal scale to $500 \mathrm{~ms} / \mathrm{div}$. Move the reference for Channel 2 to the bottom of the screen and the reference position for Channel 1 to the second grid division from the top.
(b) Start MATLAB.

6.2.2 Determine Steady-state Gain for Motor Inputs of 3, 4, 5 and 6 V

(c) We will use a MATLAB function 'meu2y' to collect data from the benches PC analog inputs. See Appendix D for more help on the 'meu2y' MATLAB function.
(d) Use the commands given below to generate a constant input to the motor for 10 s . After steady state is reached, measure the output of the generator using the DMM. Enter this value on the Data Sheet. Compute the gain by taking the ratio of the output voltage to the input voltage.

MATLAB Command	Action
vdacs $=\left[\begin{array}{llll}3 & 4 & 5 & 6\end{array}\right]$	enter the test input voltages into an array
tstep $=0.010$	set a 10-ms time step
runtime $=10$	set a run time of 10 s
$\mathrm{t}=$ tstep:tstep:runtime	set up the array of sampling times from 0 to 10 s in $10-\mathrm{ms}$ steps; t is thus a row vector of length 1000 equal to [0.01 0.020 .03 ... 9.99 10.00]
$t=t^{\prime}$	convert t to an equivalent column vector
vdac $=$ vdacs(1) * ones(length(t),1);	generate a column vector of length 1000 with all elements set to vdacs (1) = 3
type the next command, depress and hold the push button, then press return or enter from the keyboard; hold the button until meu2y finishes; after the motor reaches steady state, read the generator voltage on the DMM, and record this value on the Data Sheet; the value will fluctuate so read the value to two digits past the decimal point; the motor runs for a total of 10 s and becomes steady shortly after startup.	
[vgen,junk] = meu2y (vdac, vdac,1000*tstep,0)	output vdac to the motor simultaneously capturing the generator output in the vgen column vector
```vdac = vdacs(2) * ones(length(t),1) [vgen,junk] = meu2y (vdac,vdac,1000*tstep,0) vdac = vdacs(3) * ones(length(t),1) [vgen,junk] = meu2y (vdac,vdac,1000*tstep,0) vdac = vdacs(4) * ones(length(t),1) [vgen,junk] = meu2y (vdac,vdac,1000*tstep,0)```	repeat for remainder of the test voltages; for each case, record the reading from the DMM on the Data Sheet to two digits past the decimal point; calculate the gain K and record this on the data sheet; note that the gain varies with input voltage indicating that the system is slightly nonlinear

### 6.3 Step Response

### 6.3.1 Obtain Response to a 4-V Step Input

(a) Use similar steps as above to write some MATLAB code to apply a 4-V step input to the motor and record and display the results in a plot. Plot both the input step, vdac, and the tachometer output, vgen, verses time on one plot. At the same time use the oscilloscope to display both the step and tachometer signals.

### 6.3.2 Time Constant from 63.2-\% Point on Response Curve

(b) Use the X and Y cursors on the oscilloscope to (i) measure the steady-state gain and (ii) determine the time at which the change in the output voltage reaches $63.2 \%$ of its final value. Here, time is measured with respect to the point at which the step change in the input voltage occurs. You will need to use the "RUN/STOP" button of the Oscilloscope to freeze the step response of the motor so that you can measure the time constant of the rise of the response.

## Detailed Information for Measuring Time Constant Using Oscilloscope Cursors

(i) Turn the oscilloscope cursors on, and select Channel 2 for the cursor source. Align the Y cursor with the steady-state output voltage. Record this value as $\mathrm{V}_{\text {out }}(\infty)$ on the Data Sheet. Use this value and the input step size of $\mathrm{V}_{\text {in }}(\mathrm{t} \geq 0)=4 \mathrm{~V}$ to compute $\mathrm{K}_{63.2 \%}=\mathrm{V}_{\text {out }}\left({ }^{\infty}\right) / \mathrm{V}_{\text {in }}(\mathrm{t} \geq 0)$.
(ii) Calculate $\Delta \mathrm{V}_{\text {out }}(\tau)=63.2 \% \times \mathrm{V}_{\text {out }}(\infty)$. Adjust the Y cursor to read this value.
(iii) Align the X 1 cursor with the step change in the input voltage.
(iv) Align the X 2 cursor with the intersection of the $\mathrm{Y} 1(2)$ cursor and the output voltage. Record the $\Delta \mathrm{t}$ (2) cursor reading on the data sheet as $\tau_{63.2 \%}$.

## Important Note

The above method employs a single point on the step-response curve and thus exhibits maximum sensitivity to experimental and modeling errors. The value of $63.2 \%$ is a convenient choice because (i) the time constant can be read directly and (ii) the slope of the step-response curve at this point facilitates accurate positioning of both cursors. What is most important, however, is that the point is representative of the step response. Because the step response for this case is $\mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{V}_{\text {out }}(\infty)[1-\exp (-\mathrm{t} / \tau)]$, the time constant is given by

$$
\tau=-t / \ln \left[1-V_{\text {out }}(\mathrm{t}) / \mathrm{V}_{\text {out }}(\infty)\right],
$$

and $t$ and $V_{\text {out }}(\mathrm{t})$ anywhere on the step response can be used to find $\tau$. This method is described in greater detail in the Appendix C.

### 6.3.3 Time Constant from a "Fit" of Step Response Data

(f) The last step-response method involves plotting the observed response together with the predicted response based on K and $\tau$ found with the $63.2 \%$ method, then iterating on K and $\tau$ until good agreement between predicted and observed behavior is achieved.

Start out with a $K$ and $\tau$ from the $63.2 \%$ method, and in MATLAB calculate the predicted response (use the function "exp" for the exponential). On the same plot, plot the sampled data response and the predicted response verses time. Repeat with different values of $K$ and $\tau$ until good agreement is achieved commands,
Hint: Typing the first letter of the command followed by the up-arrow key returns to the last command starting with that letter.

Record the final values of K and $\tau$ on the Data Sheet as $\mathrm{K}_{\mathrm{fit}}$ and $\tau_{\mathrm{fit}}$.

### 6.4 Frequency Response

### 6.4.1 Manual Sine Sweep Identification

The wiring of the motor-generator system for determining its frequency response is the same as the step response. You will manually generate a Bode plot of the frequency response of the motor-generator system. This is done by applying a number of different frequency sine waves to the system and measuring the gain and phase shift change between the system's input and output on the oscilloscope.

## Oscilloscope

(g) Run the oscilloscope in roll mode under "Main/Delayed". The tachometer signal is very noisy, so we would like to filter this. Press "Acquire" and select "High Resolution" to apply an averaging filter. The below table gives you the needed Matlab instructions to excite the motor at different frequencies. Run the Matlab commands while depressing the amplifier push button. Observe the input and output waveforms on the oscilloscope. Make sure you see only two or three periods of the input and output on the oscilloscope so you can accurately measure the gain and phase-shift.

Measure the peak-to-peak voltage of channel one and record this on the datasheet as $\mathrm{V}_{\mathrm{p}-\mathrm{p} \text {, in }}$.

## Determine Frequencies for Constructing Bode Plots

(h) The Matllab commands below adjust the input frequency between 0.2 and 10 Hz . Notice how the gain and phase shift change with frequency.

## Determine Gain $\mathbf{G}(\mathbf{f})$ and Phase Shift $\phi(\mathrm{f})$ at Each Test Frequency Using Oscilloscope Cursors

(j) Turn the oscilloscope cursors on and select Channel 2 for the cursor source. Use the cursors to measure $\mathrm{V}_{\mathrm{p}}$ p,out, the peak-to-peak voltage of the generator output. Record this value on the Data Sheet. Compute the gain at this frequency from

$$
G(f)=\frac{V_{p-p, \text { output }}}{V_{p-p, \text { input }}}
$$

Record G(f) on the Data Sheet.
(k) Measure the time delay $\tau_{\text {delay }}$ of the generator output voltage with respect to the motor input voltage using the time cursors. Record the time delay on the Data Sheet. Compute the phase shift at this frequency from

$$
\phi(f)=-360^{\circ} \times f \tau_{\text {delay }}
$$

Record $\phi(\mathrm{f})$ on the Data Sheet.

MATLAB Command	Action
freqs $=\left[\begin{array}{llllllll}.2 & .4 & .8 & 1.6 & 3.2 & 6.4 & 8 & 10\end{array}\right]$	enter the test frequencies into an array
$\begin{aligned} & \mathrm{t}=0: .005: 30 ; \\ & \mathrm{t}=\mathrm{t} \text { '; } \\ & \text { vdac }=2.0 * \sin (\text { freqs }(1) * 2 * \mathrm{pi} * \mathrm{t})+4.0 ; \\ & {[\text { vgen,junk] = meu2y(vdac,vdac, } 5,0) ;} \\ & \% \text { Stop the Oscilloscope display } \\ & \text { \%and measure Gain and Phase for } 0.2 \mathrm{~Hz} \end{aligned}$	Generate and apply 0.2 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu2y command
```t=0:.005:30; t=t'; vdac = 2.0*sin(freqs(2)*2*pi*t) +4.0; [vgen,junk] = meu2y(vdac,vdac,5,0); %Stop the Oscilloscope display %and measure Gain and Phase for 0.4 Hz```	Generate and apply 0.4 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu2y command


```t=0:.005:30; t=t'; vdac = 2.0*sin(freqs(3)*2*pi*t) +4.0; [vgen,junk] = meu2y(vdac,vdac,5,0); %Stop the Oscilloscope display %and measure Gain and Phase for 0.8 Hz```	Generate and apply 0.8 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu2y command
$\begin{aligned} & \mathrm{t}=0: .002: 10 ; \\ & \mathrm{t}=\mathrm{t} \text { '; } \\ & \text { vdac }=2.0 * \sin (\text { freqs }(4) * 2 * \mathrm{pi*t})+4.0 ; \\ & {[\text { vgen,junk] }=\text { meu2y(vdac,vdac, } 2,0) ;} \\ & \% \text { Stop the Oscilloscope display } \\ & \text { \%and measure Gain and Phase for } 1.6 \mathrm{~Hz} \end{aligned}$	Generate and apply 1.6 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu 2 y command
```t=0:.002:10; t=t'; vdac = 2.0*sin(freqs(5)*2*pi*t) +4.0; [vgen,junk] = meu2y(vdac,vdac,2,0); %Stop the Oscilloscope display %and measure Gain and Phase for 3.2 Hz```	Generate and apply 3.2 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu 2 y command
```t=0:.001:7.5; t=t'; vdac = 2.0*sin(freqs(6)*2*pi*t) +4.0; [vgen,junk] = meu2y(vdac,vdac,1,0); %Stop the Oscilloscope display %and measure Gain and Phase for 6.4 Hz```	Generate and apply 6.4 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu2y command
```t=0:.001:7.5; t=t'; vdac = 2.0*sin(freqs(7)*2*pi*t)+4.0; [vgen,junk] = meu2y(vdac,vdac,1,0); %Stop the Oscilloscope display %and measure Gain and Phase for 8 Hz```	Generate and apply 8 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu 2 y command
$\begin{aligned} & \mathrm{t}=0: .001: 7.5 ; \\ & \mathrm{t}=\mathrm{t} \text { '; } \\ & \text { vdac }=2.0 * \sin (\text { freqs }(8) * 2 * \mathrm{pi} * \mathrm{t})+4.0 ; \\ & {[\text { vgen,junk] = meu2y(vdac,vdac, 1,0); }} \\ & \text { \%Stop the Oscilloscope display } \\ & \text { \%and measure Gain and Phase for } 10 \mathrm{~Hz} \end{aligned}$	Generate and apply 10 Hz input. Offset is needed so that the motor does not stop due to friction. Press the Amplifier enable button when you run the meu 2 y command

Construct Bode Plots Based on Results of Sinusoidal Inputs

(I) Use the commands below to plot the bode plots. The values of the K and τ, determined from a graphical analysis of the Bode plots as described in the Appendix should be entered on the Data Sheet as $\mathrm{K}_{\text {mansweep }}$, $\tau_{\text {mansweep, }-3 \mathrm{~dB}}$, and $\tau_{\text {mansweep, }-45^{\circ}}$. Along with the break frequencies

MATLAB Command	Action
clear all	clear all variables
fs $=$ [x.x x.x x.x x.x x.x x.x x.x x.x]	enter the test frequencies into an array
Gs $=[\mathrm{x} . \mathrm{xx} \mathrm{x} . \mathrm{xx} \mathrm{x} . \mathrm{xx} \mathrm{x} . \mathrm{xx}$... $\mathrm{x} . \mathrm{xx}$]	enter gains into an array
phis = [$\mathrm{xx.x} \mathrm{xx.x} \mathrm{xx.x} \mathrm{xx.x}$... $\mathrm{xx.x}]$	enter phase shifts into an array
Gdbs $=20$ * $\log 10$ (Gs)	convert gains to decibels [dB]
semilogx (fs, Gdbs)	plot gain in dB vs. frequency in Hz with frequency on a log scale
xlabel ('f [Hz]')	label x axis
ylabel ('G [dB]')	label y axis; print out gain plot
semilogx (fs, phis)	plot phase shift in degrees [${ }^{\circ}$] vs. frequency in Hz with frequency on a log scale
xlabel ('f [Hz]')	label x axis
ylabel ('phi [deg]')	label y axis; print out phase-shift plot

6.5 Frequency Response of a Beam-mass System (TA Demonstration)

6.5.1 Configuring the System

(a) Disconnect the two cables with BNC connectors on one end and push pins on the other.
(b) Move the cart with the beam shaker apparatus into position in front of the laboratory bench. DO NOT POWER THE APPARATUS AT THIS TIME.
(c) Using a BNC patch cable, connect the Source Output of the analyzer to the amplifier input.
(d) Using a second BNC patch cable, connect the Force Transducer Output located on the vertical support of the beam apparatus to the tee on Channel 1 of the oscilloscope.
(e) Using a third BNC patch cable, connect the Accelerometer Output located on the horizontal base of the beam apparatus to the tee on Channel 2 of the oscilloscope.
(f) Make sure the power switch on the front of the amplifier is in the "off" position. Plug in the amplifier power strip to the power strip on the laboratory bench. Power on both power strips. The cooling fans of the amplifier should begin operating.

6.5.2 Programming the Oscilloscope

(a) Change both Channel 1 and Channel 2 to AC coupling.

6.5.3 Programming the Signal Analyzer for the Sine-swept Method for the Beam / mass Apparatus

Keystrokes	Action
General System Programming	
Preset (system far left) DO PRESET (F1) System Utility (system V) CALIBRATN (F2) AUTO CAL = OFF (F1)	Initialize the signal analyzer
Load Previously Saved Instrument Setup Parameters from Flexible Diskette	
Save/Recall (system Z) CATALOG = ON (F8)	Make sure the flexible diskette with the previously saved instrument parameters in the drive of the instrument, then access the directory on the diskette using the disk utilities
Use the marker control knob to move the highlight bar to the file named "BEAM.STA"	
RECALL STATE (F5) ENTER (F1) CATALOG = OFF (F8)	Load the parameters from the flexible diskette; wait while data is read, then turn diskette directory display off
Start (measurement R)	TURN ON THE POWER AMPLIFIER using the front-panel switch, then start the sine sweep process; observe the source and output waveforms on the screen of the oscilloscope as the sweep process is occurring

(a) When the "Start" button is pushed as shown above, the signal analyzer will excite the system with a series of sine waves at increasing frequencies. Observe the input and output waveforms on the screen of the oscilloscope. Also, observe how the Bode plots are constructed on the screen of the signal analyzer.

6.5.4 Determining the Natural Frequency of the System

(a) Using the large knob in the Marker section of the analyzer controls, move the display marker to large peak in the frequency response curve characteristic of the beam-mass system. Read the frequency, gain and phase shift, and record these values on the Data Sheet.
(b) Move the display marker to the secondary peak in the frequency response curve. This peak is characteristic of the cart on which the system rests. Read the frequency, gain and phase shift, and record these values on the Data Sheet.

APPENDIX A. MOTOR-GENERATOR SYSTEM

A. 1 Basic Layout

The system analyzed in this experiment consists of a DC motor coupled to a DC generator (a motor run backwards) as shown in Fig. A.1. The motor converts a voltage into angular speed, and the generator, in turn, converts this angular speed back into a voltage. The generator acts as a tachometer, a device for measuring rotational speed. Together, the motor-generator combination gives us a system that takes an input voltage and produces an output voltage. The rotational speed of the shaft serves as an intermediate variable of important physical significance. This voltage-in/voltage-out configuration is ideally suited to the DAC / ADC computer-based instrument available at the laboratory station.

Figure A. 1 Motor-generator system.
The motor and generator are connected to the computer as shown in Fig. A.2. Here, we see that the DAC output voltage is routed to a power amplifier rather than directly to the motor. The power amplifier is needed because the current-producing capability of the DAC is insufficient to drive the motor. Although the amplifier does provide a voltage gain of about 2.4, its primary purpose is to meet the power demands of the motor. The need for an intermediate component to handle the power requirements of the system arises frequently in real-world applications and illustrates an important principle in interfacing low-power electronic equipment with high-power mechanical devices.

Figure A. 2 Block diagram showing connections between instruments and motor-generator.

A. 2 Dynamic Characteristics

Although the system used in this experiment consists of a motor and a generator connected together such that a voltage input produces a voltage output, our main interest lies in the way the motor speed responds to changes in input. We can ignore the dynamics characteristics of the generator and instead think of it simply as a
speed sensor. To better understand the relationship between input and speed, consider the following simple analogy from everyday life. Imagine driving on a level highway (I-57 or I-74, for example). The system here is the vehicle (analogous to the motor), the input is throttle position (analogous to input voltage), and the output is vehicle speed (analogous to motor speed or generator output). This is a first-order system with a characteristic time constant τ. We might be tempted to think that this is a second-order system because the equations of motion involve the second-order derivative acceleration. However, the system is actually first-order because acceleration is the first-order derivative of the system state variable speed. For the system to be linear, the force opposing the motion must be linearly proportional to vehicle speed. In the vehicle example, the resistive force is actually a constant (rolling friction) plus a second constant times the square of vehicle speed (aerodynamic drag) with no linear term whatsoever. Despite this inherently nonlinear behavior, dynamic response is very similar to that of a linear system. Indeed, because very few real-world systems are truly linear, the analysis considered in this experiment would be quite limited if the concepts could not also be extended to quasi-linear systems such as the vehicle example given here.

Vehicle speed does not respond instantaneously to changes in throttle position owing to vehicle inertia. Rather, as a first-order system, speed exhibits an exponential response to a step input and an exponential approach to a constant offset for a ramp input. This behavior is illustrated in Fig. A.3. We expect the same type of response for the motor used in this experiment.

Figure A. 3 Time history of throttle position and vehicle speed.
Returning to the motor-generator combination, the system is characterized by two parameters. One parameter is K , the steady-state gain or proportionality between input voltage and output voltage. Suppose that 1 V is applied to the input of the motor. After a while, the motor attains a certain constant speed, say 1200 rpm . The generator, in turn, converts this speed to an output voltage, say 1.2 V . The steady-state gain is then $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=$ 1.2. If the system is linear, then an input voltage of 2 V to the motor produces an output voltage of $1.2 \times 2 \mathrm{~V}=2.4$ V from the generator. Likewise, an input voltage of 0.5 V produces an output voltage of $1.2 \times 0.5 \mathrm{~V}=0.6 \mathrm{~V}$. For a linear system, we have that $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{K}=1.2$ for all $\mathrm{V}_{\text {in }}$. As we shall see later, K varies slightly with input voltage. The second parameter is the time constant τ that characterizes the dynamic response of the system. The time constant depends on the system inertia or "mass" and the relationship between energy losses (i. e., conversion to thermal energy) and angular velocity. Here, the system "mass" is actually the moment of inertia of the rotating components, and the losses arise from both electrical and mechanical "friction" effects.

The purpose of this experiment is to measure K and τ from the dynamic response of the motor-generator system using the two methods previously described; namely, step response and sinusoidal frequency response. Before presenting these methods in detail, let us examine the system more closely to better understand its dynamic behavior.

A. 3 Block Diagram, Governing Equations, and Transfer Function

Figure A. 4 is an expanded block diagram that sets forth the various elements of the motor so that its overall dynamic behavior can be more easily analyzed. The computer generates a digital representation of the input
waveform that is sent to the digital-to-analog converter (DAC). The DAC converts this digital form to an analog voltage $\mathrm{V}_{\mathrm{DAC}}$ between -10 and +10 V . The power amplifier increases this voltage by the amplifier gain $\mathrm{K}_{\mathrm{amp}}$ that is nominally 2.4. This voltage is, in turn, applied to input terminals of the motor. To understand how this applied voltage creates the current necessary to drive the motor, we must consider the electric circuit of the motor as shown in Fig. A.5. This simple circuit consists of three components: (a) a resistor representing the resistance of the motor coil, (b) an inductor representing the inductance of the motor coil, and (c) a voltage source representing the reverse voltage produced by the motor. The reverse voltage is proportional to the speed at which the shaft turns and, in effect, represents the generator effect of the motor. Using Kirchoff's Voltage Law along with the component equations for a resistor and inductor, we have the governing equation for the electrical circuit of the motor. Thus,

Figure A. 4 Block diagram of motor-generator system showing main elements of dynamic response.

Figure A. 5 Electric circuit of motor.

Governing Equation for Electrical Circuit of Motor

$$
i(t) R_{c}+L_{c} \frac{d i(t)}{d t}=V_{a m p}(t)-V_{r}(t)
$$

We can solve this equation in the time domain using any of several methods or in the transform domain using either (a) the Laplace transform Method for an initial-value problem or (b) the Fourier Transform Method for a quasisteady periodic input. The advantage of the transform domain is that each equation is converted to an algebraic
form that can, in turn, be written as a transfer function. The various transfer functions representing the governing equations for the different parts of the overall system can then be combined using block algebra.

The corresponding Laplace and Fourier Transforms of the above governing equation are:

Laplace Transform of Governing Equation for Electrical Circuit of Motor

$$
L_{c} s \hat{i}(s)-i(0)+R_{c} \hat{i}(s)=\hat{V}_{a m p}(s)-\hat{V}_{r}(s)
$$

Fourier Transform of Governing Equation for Electrical Circuit of Motor

$$
L_{c}(j \omega) \tilde{i}(\omega)+R_{c} \tilde{i}(\omega)=\tilde{V}_{a m p}(\omega)-\tilde{V}_{r}(\omega)
$$

Solving for $\hat{i}(s)$ and $\tilde{i}(\omega)$, we have

Laplace Transfer Function

$$
\hat{i}(s)=\frac{V_{a m p}(s)-V_{r}(s)}{L_{c} s+R_{c}}+\frac{i(0)}{L_{c} s+R_{c}}
$$

$$
\hat{G}(s)=\frac{1}{L_{c} s+R_{c}}
$$

Fourier Transfer Function

$$
\hat{\dot{i}}(\omega)=\frac{\tilde{V}_{a m p}(\omega)-\tilde{\mathrm{V}}_{\mathrm{r}}(\omega)}{\mathrm{L}_{\mathrm{c}}(\mathrm{j} \omega)+\mathrm{R}_{\mathrm{c}}}
$$

$$
\tilde{G}(s)=\frac{1}{L_{c}(j \omega)+R_{c}}
$$

We observe that the two transfer functions are the same except that (a) ($\mathrm{j} \omega$) is substituted for s and (b) the initial condition term is absent from the Fourier Transfer form. Following the standard convention in linear systems analysis, we shall write the transfer function in Laplace form but without the initial-value term. This may seem a bit inconsistent at first, but we must remember that the purpose of the block diagram is to allow us to easily visualize the relationships between the various elements of system. Cluttering up the diagram with subtle distinctions and messy extra terms only serves to obscure the relationships and thus defeat the basic purpose of the block diagram. We must always keep these simplifications in the back of our mind, however.

We shall further simplify the notation by using the same variable for both its time-dependent function and its Laplace or Fourier transform. Thus, "i" may represent $i(t), \hat{i}(s)$, or $\tilde{i}(\omega)$ depending on context. Again, we choose simplicity of notation over precise definitions to improve the overall clarity of the expression.

Simplified Form of Transfer Function of Motor Coil

$$
i=\frac{V_{a m p}-V_{r}}{L_{c} s+R_{c}}
$$

Consider again the system block diagram shown in Fig. A.4. We next consider the following three simple proportional relationships.

Current-to-Torque Conversion

$$
\mathrm{T}_{\mathrm{a}}=\mathrm{K}_{\mathrm{T}, \mathrm{~m}} \mathrm{i}
$$

where T is armature torque, i is coil current, and $K_{T, m}$ is the torque coefficient of the motor. $K_{T, m}$ is taken to be a constant of the motor.

Reverse Voltage of Motor

$$
V_{r}=K_{V, m} \omega
$$

where V_{r} is reverse voltage of the motor, ω is the angular speed of the motor, and $K_{V, m}$ is the voltage coefficient of the motor. $\mathrm{K}_{\mathrm{V}, \mathrm{m}}$ is also taken to be a constant of the motor.

Reverse Voltage of Generator

$$
V_{\text {gen }}=K_{V, g} \omega
$$

where $\mathrm{V}_{\text {gen }}$ is reverse voltage of the generator, ω is the angular speed of the generator, and $\mathrm{K}_{\mathrm{V}, \mathrm{g}}$ is the voltage coefficient of the generator. Note that the generator follows the same analysis as the motor. However, because the generator feeds the high-impedance inputs of the ADC, oscilloscope, and multimeter, the current is nearly always zero, and the output voltage is just the reverse voltage of the generator.

The remaining two boxes relate to the mechanical portion of the system; namely, (a) the rotating shaft, (b) the shaft bearings and other elements that provide the frictional load, and (c) the flywheel.

Governing Equation for Rotating Shaft

Applying Newton's Law of Motion to a rotating body, we have

$$
\mathrm{J} \frac{\mathrm{~d} \omega(\mathrm{t})}{\mathrm{dt}}=\mathrm{T}_{\mathrm{a}}(\mathrm{t})-\mathrm{T}_{\mathrm{f}}(\mathrm{t})
$$

where $\omega(t)$ is angular speed, $T_{a}(t)$ is armature torque, $T_{f}(t)$ is frictional torque, and J is the moment of inertia of the shaft and flywheel. The corresponding simplified transfer function is

$$
\omega=\frac{\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{f}}}{\mathrm{Js}}
$$

Frictional Torque

Lastly, the frictional torque is proportional to angular speed as follows.

$$
\mathrm{T}_{\mathrm{f}}=\mathrm{B} \omega
$$

where T_{f} is frictional torque, ω is the angular speed of the generator, and B is the coefficient of the kinetic friction. B is taken to be a constant representing the total bearing friction in the motor, generator, and flywheel.

Now we can combine all the various elements to obtain a single transfer function between $V_{\text {DAC }}$ and $V_{\text {gen }}$. We begin with the mechanical elements of the system and work backward to $\mathrm{V}_{\mathrm{DAC}}$ and forward to $\mathrm{V}_{\text {gen }}$. Thus,

$$
\frac{V_{\text {gen }}}{V_{D A C}}=\frac{\mathrm{K}_{\mathrm{amp}} \mathrm{~K}_{\mathrm{V}, \mathrm{~g}} \mathrm{~K}_{\mathrm{T}, \mathrm{~m}}}{\left(\mathrm{~L}_{\mathrm{c}} \mathrm{~s}+\mathrm{R}_{\mathrm{c}}\right)(\mathrm{J} \mathrm{~s}+\mathrm{B})+\mathrm{K}_{\mathrm{V}, \mathrm{~m}} \mathrm{~K}_{\mathrm{T}, \mathrm{~m}}}=\frac{\mathrm{K}}{\left(\tau_{1} \mathrm{~s}+1\right)\left(\tau_{1} \mathrm{~s}+1\right)}
$$

where

$$
\begin{gathered}
\mathrm{K}=\frac{\mathrm{K}_{\mathrm{amp}} \mathrm{~K}_{\mathrm{V}, \mathrm{~g}} \mathrm{~K}_{\mathrm{T}, \mathrm{~m}}}{\mathrm{~K}_{\mathrm{V}, \mathrm{~m}} \mathrm{~K}_{\mathrm{T}, \mathrm{~m}}+\mathrm{R}_{\mathrm{c}} \mathrm{~B}} \\
\tau_{1}=\tau_{\mathrm{m}}\left(\frac{2 \rho_{\mathrm{e}}}{1+\rho_{\mathrm{e}}-\sqrt{\left(1+\rho_{\mathrm{e}}\right)^{2}-4 \rho_{\mathrm{e}} \mathrm{~K}_{1}}}\right) \\
\tau_{2}=\tau_{\mathrm{m}}\left(\frac{2 \rho_{\mathrm{e}}}{1+\rho_{\mathrm{e}}+\sqrt{\left(1+\rho_{\mathrm{e}}\right)^{2}-4 \rho_{\mathrm{e}} \mathrm{~K}_{1}}}\right) \\
\mathrm{K}_{1}=\frac{\mathrm{K}_{\mathrm{V}, \mathrm{~m}} \mathrm{~K}_{\mathrm{T}, \mathrm{~m}}+\mathrm{R}_{\mathrm{c}} \mathrm{~B}}{\mathrm{R}_{\mathrm{c}} \mathrm{~B}} \\
\tau_{\mathrm{m}}=\frac{\mathrm{J}}{\mathrm{~B}}, \quad \\
\tau_{\mathrm{e}}=\frac{\mathrm{L}_{\mathrm{c}}}{\mathrm{R}_{\mathrm{c}}}, \quad \text { and } \quad \rho_{\mathrm{e}}=\frac{\tau_{\mathrm{e}}}{\tau_{\mathrm{m}}}
\end{gathered}
$$

Here, K is the steady-state gain, τ_{m} is the mechanical time constant of the system, and τ_{e} is the electrical time constant of the system. As shown, the system is second-order; however, because $\tau_{\mathrm{e}} \ll \tau_{\mathrm{m}}$, we have the limiting case of $\rho_{\mathrm{e}} \rightarrow 0$ for which

$$
\tau_{1} \rightarrow \tau=\frac{\tau_{\mathrm{m}}}{\mathrm{~K}_{1}}=\frac{\mathrm{R}_{\mathrm{c}} \mathrm{~J}}{\mathrm{~K}_{\mathrm{V}, \mathrm{~m}} \mathrm{~K}_{\mathrm{T}, \mathrm{~m}}+\mathrm{R}_{\mathrm{c}} \mathrm{~B}} \quad \text { and } \quad \tau_{2}=0
$$

The corresponding transfer function is

$$
\frac{V_{\text {gen }}}{V_{D A C}}=\frac{K}{\tau s+1}
$$

A listing of important system parameters is given in Table A.1. Here, we see that ρ_{e} is very small and that the assumption of first-order system behavior is thus very good.

Table A. 1 Parameters of Motor-generator System.

Symbol	Description	Value	Units
$\mathrm{K}_{\mathrm{T}, \mathrm{m}}$	Torque coefficient of the motor (1)	0.0572	N-m/A
$\mathrm{K}_{\mathrm{V}, \mathrm{m}}$	Voltage coefficient of motor (1)	0.0573	V-s
R_{c}	Coil resistance of motor (1)	3.76	Ω
L_{c}	Coil inductance of motor (1)	0.00125	H
B_{m}	Friction coefficient of motor (1)	2.43×10^{-5}	N-m-s
J_{m}	Moment of inertia of motor (1)	2.65×10^{-6}	$\mathrm{kg}-\mathrm{m}^{2}$
$\mathrm{K}_{\mathrm{V}, \mathrm{g}}$	Voltage coefficient of generator (1)	0.0287	V-s
J_{g}	Moment of inertia of generator (2)	2.65×10^{-6}	$\mathrm{kg}-\mathrm{m}^{2}$
Kamp	Gain of power amplifier (3)	2.4	V/V
$J_{\text {fly }}$	Moment of inertia of fly wheel (4)	5.10×10^{-5}	$\mathrm{kg}-\mathrm{m}^{2}$
$J_{\text {coup }}$	Moment of inertia of couplers (4)	3.06×10^{-6}	$\mathrm{kg}-\mathrm{m}^{2}$
$\mathrm{B}_{\text {other }}$	Friction coefficient of components other than motor (5)	1×10^{-5}	N -m-s
J	Moment of inertia of system $=\mathrm{J}_{\mathrm{g}}+\mathrm{J}_{\text {fly }}+3 \mathrm{~J}_{\text {con }}{ }^{(6)}$	6.55×10^{-5}	$\mathrm{kg}-\mathrm{m}^{2}$
B	Friction coefficient of system $=\mathrm{B}_{\mathrm{m}}+\mathrm{B}_{\text {other }}{ }^{(7)}$	3.43×10^{-5}	N-m-s
τ_{e}	Electrical time constant of system ${ }^{(7)}$	3.41×10^{-4}	S
τ_{m}	Mechanical time constant of system (7)	1.91	S
K_{1}	Time constant reduction factor (7)	27.05	-
ρ_{e}	Time constant ratio (7)	1.78×10^{-4}	-
K	Steady-state gain of system (7)	1.156	V/V
τ_{1}	Primary time constant of system (7)	70	ms
τ_{2}	Secondary time constant of system (7)	0.3	ms

Notes:

1. Based on manufacturer's specifications.
2. Estimated to be the same as the motor.
3. Parameter of power amplifier.
4. Calculated from physical dimensions and material properties of flywheel and connector.
5. Estimated. As B is increased, the (primary) system time constant decreases.
6. Other components make negligible contribution to moment of inertia.
7. Calculated from equations of system model.

APPENDIX B. FIRST-ORDER SYSTEM BEHAVIOR

The important dynamic characteristics of a first-order system are summarized in Table B.1.
Table B. 1 Summary of First-order System Analysis.

Governing Equation		
Normalized Form	$\frac{d V_{\text {gen }}}{\mathrm{dt}}=\frac{K V_{D A C}(t)-V_{\text {gen }}(\mathrm{t})}{\tau} \quad V_{\text {gen }}(C$	$=\mathrm{V}_{\mathrm{go}} \quad \tau=$ time constant
Laplace Transform Form	$\hat{\mathrm{V}}_{\text {gen }}(\mathrm{s})=\hat{\mathrm{G}}(\mathrm{s})\left[\mathrm{V}_{\text {DAC }}(\mathrm{s})+\frac{\tau \mathrm{V}_{\mathrm{o}}}{\mathrm{K}}\right]$	$\hat{\mathrm{G}}(\mathrm{s})=\frac{\mathrm{K}}{\tau \mathrm{s}+1}$
Fourier Transform Form	$\tilde{V}_{\text {gen }}(\omega)=\tilde{G}(\omega) \tilde{V}_{\text {DAC }}(\omega)$	$\tilde{\mathbf{G}}(\omega)=\frac{\mathrm{K}}{\tau(\mathrm{j} \omega)+1}$
Transfer Function Form	$\xrightarrow{\widehat{\mathrm{V}}_{\mathrm{DAC}}(\mathrm{~S})} \sqrt{\frac{\mathrm{K}}{\tau \mathrm{~s}+1}}$	$\widehat{\mathrm{V}}_{\mathrm{gen}}(\mathrm{~s})$

Solutions						
General Time-Domain Solution	$V_{\text {gen }}(t)=\exp (-t / \tau) \int_{0}^{t} \exp \left(t^{\prime} / \tau\right) K V_{\text {DAC }}\left(t^{\prime}\right) d t^{\prime} \quad+V_{g o}$					

Steady-state Input	
Input $V_{\text {DAC }}(t)$	$V_{\text {DAC }}(t)=V_{\text {DAC }}=$ constant
Output $V_{\text {gen }}(t)$	$V_{\text {gen }}(t)=K V_{\text {DAC }}$

Figure C. 1 Typical step-input response.

Figure C. 2 Two graphical methods of determining system time constant.

APPENDIX C. STEP RESPONSE

In our experiment, we make a step change in the input voltage and observe how the system responds. The expected waveform is shown in Fig. C.1. Here, we have an exponential approach to a new steady state speed and generator output voltage.

Step Response Method: Time constant is time required for voltage to reach $\mathbf{6 3 . 2}$ \% of its final value

This method is illustrated in Fig. C. 2
The parametric step response of the output voltage for the special case of $\mathrm{V}_{\mathrm{o}}=0$ is given by

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{V}_{\text {out }}(\infty)[1-\exp (-\mathrm{t} / \tau)] \\
& \mathrm{V}_{\text {out }}(\tau)=\mathrm{V}_{\text {out }}(\infty)[1-\exp (-1)]=0.632 \mathrm{~V}_{\text {out }}(\infty)
\end{aligned}
$$

As previously noted, the $63.2-\%$ point is a particularly convenient choice because (a) the time constant can be read directly and (b) the slope of the curve at this point facilitates graphical analysis. However, other representative points can be used. In this case, the time constant τ is calculated from

$$
\tau=-t / \ln \left[1-V_{\text {out }}(t) / V_{\text {out }}(\infty)\right] .
$$

Step Response Method: Iterative fit of response data

In this method, we plot the parametric response curve together with the response data using guessed values of K and τ and iterate on the parameters until good agreement is achieved. This method is easier to implement than a conventional curve fit and furthermore demonstrates the effect that K and τ each have on the system response.

Appendix D. MATLAB Functions

In this experiment, we use the MATLAB software to generate the desired input waveforms and control the PCbased hardware. We employ several M-files specifically designed to ease this process. A brief discussion of these M-files and the associated MATLAB functions is in order.

D. 1 M-file to Control the PC-based Hardware

The operation of the analog-to-digital and digital-to-analog converters is controlled by the following MATLAB function.

```
[y0, y1] = meu2y (u0, u1, stepms, echo)
```

"meu2y" simultaneously (a) samples Analog Input Channel 0 storing the results in column vector "y0", (b) samples Analog Input Channel 1 storing the results in column vector "y1", (c) outputs the column vector of voltages "u0" to Analog Output Channel 0, and (d) outputs the column vector of voltages "u1" to Analog Output Channel 1. "stepms" is the time step in ms, and "echo" is a flag that allows the input to be echoed to the output. We normally do not use the echoing capability of the "meu $2 y$ " function, and thus this argument is set to 0 . Sampling begins a short delay time after the "meu2y" command is entered. The "meu2y" function executes as many time steps as there are elements in the " u 0 " and " $\mathrm{u1}$ " column vectors.

D. 2 Standard MATLAB Functions

We also use the following standard MATLAB functions.
mean(V) computes the mean of array of values V
To learn more about these built-in functions, type "help mean" or "help trapz" at the MATLAB prompt.

APPENDIX E. SINUSOIDAL RESPONSE

Analysis of the sinusoidal response data of a first order system is a two-step process. The first step is to obtain the frequency response curves or Bode plots from the time-domain response data. The second step is to find K and τ from the Bode plots.

Step 1 - Construct Bode Plots

Constructing a Bode plot involves the direct measurement of the input and output waveforms. We input sine waves with different frequencies to drive the system. At each frequency, we measure the following four quantities and compute the gain and phase lag as indicated below.

```
\(\Delta \mathrm{V}_{\text {in }}=\) peak-to-peak amplitude of \(\mathrm{V}_{\text {in }}(\mathrm{t})\)
    \(\Delta \mathrm{V}_{\text {out }}=\) peak-to-peak amplitude of \(\mathrm{V}_{\text {out }}(\mathrm{t})\)
\(t_{\text {delay }}=\) time lag between \(\mathrm{V}_{\text {in }}\) and \(\mathrm{V}_{\text {out }}\) waveforms
\(\mathrm{G}(\mathrm{f})=\Delta \mathrm{V}_{\text {out }} / \Delta \mathrm{V}_{\text {in }} \quad \phi(\mathrm{f})=360^{\circ} \mathrm{ft}_{\text {delay }}\)
```

Bode plots are made by plotting the gain in decibels against the frequency in Hz and phase shift against the frequency in Hz . The gain in decibels is given by

$$
\mathrm{G}[\mathrm{~dB}]=20 \log _{10}(\mathrm{G})
$$

Refer to Fig. A. 1 for annotated Bode plots for a first-order system.

Step 2 - Obtain Dynamic Parameters

The frequency response of a first-order system is given by

$$
G(f)=\frac{K}{\sqrt{1+(2 \pi f \tau)^{2}}} \quad \text { and } \quad \phi(f)=-\arctan (2 \pi f \tau)
$$

Thus, we have that

$$
G(0)=K
$$

$$
\mathrm{G}\left(\mathrm{f}_{\mathrm{b}}\right) \quad=\frac{K}{\sqrt{2}}=\mathrm{K}-3 \mathrm{~dB} \quad \text { and } \quad \phi\left(\mathrm{f}_{\mathrm{b}}\right)=-45^{\circ} \text { when } 2 \pi \mathrm{f}_{\mathrm{b}} \tau=1
$$

The dynamic system parameters are obtained from the Bode plots as follows:
(a) K is the asymptotic gain as $\mathrm{f} \rightarrow 0$.
(b) $\tau_{G}=1 /\left(2 \pi f_{b G}\right)$ is an estimate of τ based on the gain curve, where $G\left(f_{b G}\right)$ is -3 dB from the low frequency gain (DC gain).
(c) $\tau_{\phi}=1 /\left(2 \pi f_{b \phi}\right)$ is an estimate of τ based on the phase-shift curve, where $\phi\left(f_{b \phi}\right)=-45^{\circ}$.
τ_{G} and τ_{ϕ} may differ owing to modeling and experimental errors.

Figure A. 1 Frequency Response Curves (Bode Plots) of a First-order Linear System.

Appendix F. Dynamic Signal Analyzer (Instrument used to generate the Bode plot of the Beam-mass system.

The Dynamic Signal Analyzer (DSA) is a single device that possesses many of the combined capabilities of the oscilloscope, the function generator, the PC-based data acquisition hardware, and the MATLAB software. The primary difference lies in the user interface (instrument vs. computer) and speed (the DSA has a faster data capture rate). Also, the DSA provides front-end filtering and gain and offset adjustments that the PC-based system does not. These differences are consistent with the general observation that dedicated instruments are typically less flexible than PC-based methods in terms of being able to change the method, but instruments are typically easier to use and better at accomplishing the specific task for which they were designed. A block diagram of the digital signal analyzer is given in Fig. B. 1.

In this experiment, the DSA will be used to determine the frequency response (Bode) plots of the Beam-mass system. The function generator built into the signal analyzer will be used to excite the system. The DSA will sweep through frequencies and plot the corresponding Bode plot.

Figure B. 1 Block Diagram of Digital Signal Analyzer.

Appendix G. Frequency Response of a Beam-mass System

Here, we study a mechanical system consisting of a horizontal steel beam of rectangular cross section fixed at both ends and operated on at its midpoint by a large electromagnet (known as a shaker) as shown in Figure G.1. A concentrated mass is attached to the center of the beam. To properly analyze this system, we must consider the inertial (mass) contributions of the beam itself, the concentrated mass, and the moving element of the shaker.

A lumped-parameter (spring-mass-dashpot) analysis reveals several important aspects of the problem. The system is characterized by three parameters: (a) the mass M representing the total system inertia, (b) the spring constant K representing the elastic part of the system where energy is stored in a deformed member, and (c) the dashpot constant D representing the dissipation of kinetic energy into heat by friction. Unless the kinetic energy is very large as is the case for heavy objects or high speeds, the temperature rise due to dissipation may be so small as to be totally negligible. The dashpot may also be referred to as a viscous or inelastic effect. The three parameters M, D, and K collapse into the natural frequency $\omega_{n}=\sqrt{K / M}$ and the damping ratio $\zeta=D /\left(2 M \omega_{n}\right)$ which, in turn, become the characteristic parameters of the transient system. These parameters may be further restated in terms of the damped natural frequency ω_{d} and the resonance frequency ω_{r}.

Figure G. 1 Beam-mass system studied in this experiment.
Natural Frequency of Fundamental Mode from Beam Vibration Analysis

$$
\left(\omega_{\mathrm{n}, 1}\right)^{2}=\frac{K}{m_{\text {eff }}}=\left(B_{1}\right)^{2} \frac{E I}{m_{\text {beam }} L^{3}}
$$

Static Spring Constant for Simple Beam Free at Both Ends

$$
K=48 \frac{E I}{L^{3}}
$$

Effective Mass of Beam Based on Fundamental-mode Natural Frequency

$$
m_{\text {eff }}=\frac{48}{\left(B_{1}\right)^{2}}\left(m_{\text {beam }}\right)=\frac{48}{(22.37)^{2}}\left(m_{\text {beam }}\right)=0.09592 m_{\text {beam }}
$$

Because the beam, concentrated mass, and shaker are all rigidly connected, the masses of these components may be summed and a new natural frequency computed for the system. Thus,

Total System Mass

$$
M=m_{\text {eff }}+m_{\text {conc }}+m_{\text {shk }}
$$

Natural Frequency Based on Total System Mass

$$
\omega_{\mathrm{n}}=\sqrt{\frac{K}{M}}=\omega_{\mathrm{n}, 1} \sqrt{\frac{m_{\mathrm{eff}}}{M}}
$$

