ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL

Experiment No. 4 Modeling and Identification of an Electric Motor using Step Response and Frequency Response Methods Data Sheet

STEADY-STATE GAIN (10 PTS)

V _{DAC} [V]	V _{DMM} [V]	$K = V_{DMM} / V_{DAC} [V/V]$
3		
4		
5		
6		

Observations:

STEP RESPONSE (20 PTS)

	Data		
	V _{in} (t ≥ 0)	4 V	
	V _{out} (∞)		
	$K = V_{out}(\infty) / V_{in} \ (t \ge 0)$		
Time at 63.2 % of Maximum Change	τ _{63.2}		
Iterative Fit of Observed Response Data	K _{fit}		
	τ _{fit}		

Observations:

Discuss possible inaccuracies using the 63.2% rule to find K and τ . Using the iterative fit method to find K and τ . (5 pts)

FREQUENCY RESPONSE (30 PTS)

Met	hod			Data		
Manual Si	ne Sweep	f [Hz]	V _{p-p, out} [V]	G(f) [V/V]	t _{delay} [s]	φ(f) [°]
V _{offset} [V]		0.2				
V _{p-p, in} [V]		0.4				
Manual Sweep	o Calculations	0.8				
κ [ν/ν]		1.6				
Break Freq. fb -3 dB [Hz]		3.2				
Break Freq. f _{b, 45°} [Hz]		6.4				
τ _{-3 dB} [S]		8.0				
τ _{45°} [S]		10.0				

Observations:

FREQUENCY RESPONSE OF BEAM-MASS SYSTEM (5 PTS)

Results for Sine-swept Method for Beam System							
Parameter	measured	calculated	units				
Primary Natural Frequency f _{nb}		21.5	Hz				
Gain at Primary Natural Frequency G(f _{nb})			dB				
Secondary Natural Frequency f _{nc}			Hz				
Gain at Secondary Natural Frequency G(fnc)			dB				

What is the source of each of the primary and secondary peaks in frequency response of the beam-mass system?