ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL

Experiment No. 3

Noise Reduction Techniques, Instrumentation Amplifiers, and Strain Gage Measurements Data Sheet
5.1 EFFECT OF SHIELDING ON ELECTROMAGNETICALLY COUPLED NOISE (5 PTS)

	Peak-to-peak Noise Level	
Shield	Normal	Close to AC Power Cord
Ungrounded		
Grounded		

Observations:
5.2 EFFECT OF CONDUCTOR TWISTING ON INDUCTIVELY COUPLED NOISE (5 PTS)

Loop	Peak-to-peak Noise Level
Untwisted	
Twisted	

Observations:

5.3 INSTRUMENTATION AMPLIFIER GAIN, COMMON MODE GAIN, AND OFFSET (20 PTS)

Amplifier Offset Voltage Measurement $\left(\mathrm{V}_{+}=\mathrm{V}_{-}=0 \mathrm{~V}\right)$	
Offset Voltage $[\mathrm{V}]=\mathrm{V}_{\text {offset }}=\mathrm{V}_{\text {out }}$	

Amplifier Common Mode Gain and CMRR $\left(\mathrm{V}_{+}=\mathrm{V}_{-}=\mathbf{0} \mathrm{V}, 5 \mathrm{~V}\right)$	
Input Voltage $\mathrm{V}_{\text {in }}[\mathrm{V}]$	
Output Voltage (5-V supply off) $\mathrm{V}_{\text {off }}[\mathrm{V}]$	
Output Voltage (5-V supply on) $\mathrm{V}_{\text {on }}[\mathrm{V}]$	
Common Mode Gain $[-]=\mathrm{G}_{\mathrm{CM}}=\left(\mathrm{V}_{\text {on }}-\mathrm{V}_{\text {off }}\right) / \mathrm{V}_{\text {in }}$	
CMRR [dB] $=20 \log _{10}\left(\mathrm{G} / \mathrm{G}_{\mathrm{CM}}\right)$	

| Gain Resistor $R_{G}[\Omega]$ | $G_{\text {calc }}=1+49.4 \mathrm{k} \Omega / R_{G}$ | |
| :--- | :--- | :--- | :--- |

| Amplifier Normal Mode Gain (sinusoid with 0.1 $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$ amplitude and 0 VDC offset) | | |
| :--- | :--- | :--- | :--- |
| Input RMS $\mathrm{V}_{\mathrm{rms}, \text { in }}[\mathrm{V}]$ | Output $\mathrm{RMS} \mathrm{V}_{\mathrm{rms}, \mathrm{out}}[\mathrm{V}]$ | |
| RMS Normal Mode Gain [-] $=\mathrm{G}_{\mathrm{rms}}=\left(\mathrm{V}_{\mathrm{rms}, \mathrm{out}}-\mathrm{V}_{\text {offset }}\right) /\left(\mathrm{V}_{\mathrm{rms}, \text { in }}\right)$ | | |
| Calculated Gain Error $=100 \%\left(\mathrm{G}_{\mathrm{calc}}-\mathrm{G}_{\mathrm{rms}}\right) / \mathrm{G}_{\mathrm{rms}}$ | | |

Typical and Maximum Values from AD620AN Specification Sheet			
Typical Gain Error $(\mathrm{G}=1)[\%]$		Maximum Gain Error $(\mathrm{G}=1)[\%]$	
Typical Output Offset $(\pm 15 \mathrm{~V})[\mu \mathrm{V}]$		Maximum Output Offset $(\pm 15 \mathrm{~V})[\mu \mathrm{v}]$	
Typical CMRR $(\mathrm{G}=1)[\mathrm{dB}]$		Minimum CMRR $(\mathrm{G}=1)[\mathrm{dB}]$	

Observations:

Using the logarithmic identity $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$, determine how many dB a multiplication factor of 1000 corresponds to (don't forget to multiply by 20). Explain during which calculation step above that this factor is relevant. (5 pts)

Is your measured $V_{r m s, i n}=\frac{0.1 \mathrm{~V}}{\sqrt{8}}$? What would cause this measurement to be off by a factor of 2? (5 pts)

5.4 NATURAL FREQUENCY AND DAMPING RATIO OF VIBRATING BEAM (30 PTS)

Geometric Properties of Beam and Calculation of Natural Frequency			
Length $\mathrm{L}[\mathrm{m}]$		Diameter $\mathrm{D}[\mathrm{m}]$	0.0127
Density $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2700	Modulus E [Pa]	6.9×10^{10}
Calculated Natural Frequency $[\mathrm{rad} / \mathrm{s}]=\omega_{n, \text { calc }}=0.14 \frac{\mathrm{D}}{\mathrm{L}^{2}} \sqrt{\frac{E}{\rho}} 2 \pi$			

Measured Natural Frequency and Damping Ratio			
First Chosen Peak Voltage $\mathrm{V}_{1}[\mathrm{mV}]$		Second Chosen Peak Voltage $\mathrm{V}_{2}[\mathrm{mV}]$	
First Chosen Peak Time $\mathrm{t}_{1}[\mathrm{~ms}]$		Second Chosen Peak Time $\mathrm{t}_{2}[\mathrm{~ms}]$	
Cursor $\Delta \mathrm{t}[\mathrm{ms}]$		Cursor frequency $\mathrm{f}_{\text {cursor }}[\mathrm{Hz}]$	
$\mathrm{N}=$ Number of Periods between chosen Peaks			
Measured Damped Natural Frequency [rad/s] ω_{d}			
Damping Ratio ζ			
Measured Natural Frequency [rad/s] $\omega_{n, \text { meas }}$			
Calculated-Measured Difference $[\%]=100 \% \times \frac{\omega_{n, \text { calc }}-\omega_{n, \text { meas }}}{\omega_{n, \text { meas }}}$			

Observations:

