ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL

Experiment No. 3 Noise Reduction Techniques, Instrumentation Amplifiers, and Strain Gage Measurements Data Sheet

5.1 EFFECT OF SHIELDING ON ELECTROMAGNETICALLY COUPLED NOISE (5 PTS)

	Peak-to-peak Noise Level		
Shield	Normal	Close to AC Power Cord	
Ungrounded			
Grounded			

Observations:

5.2 EFFECT OF CONDUCTOR TWISTING ON INDUCTIVELY COUPLED NOISE (5 PTS)

Loop	Peak-to-peak Noise Level
Untwisted	
Twisted	

Observations:

5.3 INSTRUMENTATION AMPLIFIER GAIN, COMMON MODE GAIN, AND OFFSET (20 PTS)

Amplifier Offset Voltage Measurement ($V_+ = V = 0 \text{ V}$)		
Offset Voltage [V] = V _{offset} = V _{out}		

Amplifier Common Mode Gain and CMRR ($V_+ = V = 0 \text{ V}, 5 \text{ V}$)		
Input Voltage V _{in} [V]		
Output Voltage (5-V supply off) Voff [V]		
Output Voltage (5-V supply on) V _{on} [V]		
Common Mode Gain [–] = $G_{CM} = (V_{on} - V_{off}) / V_{in}$		
CMRR [dB] = $20 \log_{10} (G / G_{CM})$		

Gain Resistor $R_G[\Omega]$	$G_{colo} = 1 + 49.4 \text{ kO} / R_{colo}$	
Gain Resistor RG [22]	$G_{calc} = 1 + 49.4 \text{ k}\Omega / R_{G}$	

Amplifier Normal Mode Gain (sinusoid with 0.1 V _{p-p} amplitude and 0 VDC offset)		
Input RMS V _{rms,in} [V]	Output RMS V _{rms,out} [V]	
RMS Normal Mode Gain [-] = $G_{rms} = (V_{rms,out} - V_{offset}) / (V_{rms,in})$		
Calculated Gain Error = 100 % (G _{calc} – G _{rms}) / G _{rms}		

Typical and Maximum Values from AD620AN Specification Sheet		
Typical Gain Error (G = 1) [%]	Maximum Gain Error (G = 1) [%]	
Typical Output Offset (±15 V) [μV]	Maximum Output Offset (±15 V) [μν]	
Typical CMRR (G = 1) [dB]	Minimum CMRR (G = 1) [dB]	

Observations:

Using the logarithmic identity $\log_b(x\,y) = \log_b(x) + \log_b(y)$, determine how many dB a multiplication factor of 1000 corresponds to (don't forget to multiply by 20). Explain during which calculation step above that this factor is relevant. (5 pts)

Is your measured $V_{rms,in}=\frac{0.1\,V}{\sqrt{8}}$? What would cause this measurement to be off by a factor of 2? (5 pts)

5.4 NATURAL FREQUENCY AND DAMPING RATIO OF VIBRATING BEAM (30 PTS)

Geometric Properties of Beam and Calculation of Natural Frequency			
Length L [m]		Diameter D [m]	0.0127
Density ρ [kg/m ³]	2700	Modulus E [Pa]	6.9×10^{10}
Calculated Natural Frequency [rad/s] = $\omega_{n,calc} = 0.14 \frac{D}{L^2} \sqrt{\frac{E}{\rho}} 2\pi$			

Measured Natural Frequency and Damping Ratio		
First Chosen Peak Voltage V ₁ [mV]	Second Chosen Peak Voltage V ₂ [mV]	
First Chosen Peak Time t ₁ [ms]	Second Chosen Peak Time t ₂ [ms]	
Cursor ∆t [ms]	Cursor frequency f _{cursor} [Hz]	
N = Number of Periods between chosen Peaks		
Measured Damped Natural Frequency [rad/s] $\omega_{\scriptscriptstyle d}$		
Damping Ratio ζ		
Measured Natural Frequency [rad/s] $\omega_{n,meas}$		
Calculated-Measured Difference [%]= 100 % $\times \frac{\omega_{n,calc} - \omega_{n,meas}}{\omega_{n,meas}}$		

Observations: