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In this thesis we present the design and control of an underactuated two link robot
called the Pendubot.  We first give details of the design of the Pendubot, discussing the
components of the linkage and the interface to the PC used as the controller.  Parameter
identification of the Pendubot is accomplished by solid modeling methods, a least squares
solution to the energy equations of the linkage, and a constrained minimization technique.
With the identified parameters,  mathematical models are developed to facilitate controller
design.  The goal of the control is to swing the linkage from the downward equilibrium
position to the unstable inverted equilibrium positions and balance it there.  Two control
algorithms are used for this task.  Partial feedback linearization techniques are used to design
the swing up control.  The balancing control is then designed by linearizing the dynamic
equations about the desired equilibrium point.  LQR and pole placement techniques are used
to design the stabilizing controller.
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1.  INTRODUCTION

At the University of Illinois, extensive research and development has gone into the

concept and design of the two link underactuated planar robot called the Acrobot [1].  To

extend this research in underactuated planar linkages, we came up the concept of the

Pendubot [10], [11].  It is a counterpart of the Acrobot in that its two links are mounted

vertically, but instead of having the actuation at its elbow, the Pendubot is driven at its

shoulder joint.  This makes for a slightly simpler control design when compared with the

Acrobot, but all similar control issues can be studied and implemented.  The goal of the

Pendubot controller is to swing the mechanism from its open loop stable configuration to the

unstable equilibrium points and then to catch the unactuated link and balance it there.

In chapter two we explain the components that were designed or purchased to

assemble the Pendubot. Chapter three quickly goes through the derivation of the

mathematical model of the Pendubot.  The ordinary differential equations (O.D.E.s) found in

this chapter are the basis for the controller designs to be used.

Chapter four explains the parameter identification methods used to identify the

Pendubot's actual dynamic parameters.  The first method is off-line and uses a CAD software

package to draw a solid model of the links.  Then by specifying the density of the material

used for each component, the CAD package is able to calculate the parameters of the links.

The second method is on-line and uses the energy equations of the linkage to form a least

squares problem that can be solved for the unknown parameters.  The third method, which is

also on-line, solves a constrained minimization problem that finds a best fit for the parameters

by minimizing the error between actual response data and simulated response data.  The

advantage of both these methods compared to differential methods [7] is that they do not

require the realization of acceleration.

The next three chapters (5,6 and 7) discuss the control algorithms used to swing up

and balance the links at unstable equilibrium points.  For the swing up control we use the

method of partial feedback linearization discussed in [2] and [3].  The balancing control was

then found by linearizing the system and designing a full state feedback controller for that

linearized model.
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Chapters 8 and 9 display the results of the implemented controllers.  Chapter 8 has the

simulated results which can be compared with the actual responses of the Pendubot system

shown in Chapter 9.

Appendix A demonstrates how friction can be added to both the mathematical model

of the Pendubot and the energy equation identification scheme.  Appendix B reproduces the

derived equations that linearize the Pendubot about any desired equilibrium point.  Appendix

C lists the Matlab m-files needed to perform the minimization method.  Appendix D lists the

simulation files used to simulate the Pendubot with the software package Simnon [4].

Appendix E  lists the source code of three implemented controllers.  Finally, Appendix F

reproduces the mechanical drawings of the components of the linkage.
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2.  MECHANICAL DESIGN AND CONTROLLER INTERFACE

The Pendubot is shown schematically in Figure 2.1 and a photograph of the Pendubot

in its upright, "top", balancing position is shown in Figure 2.2.  The actuated joint is driven by

a high torque 90VDC permanent magnet motor without gear reduction.  To give joint one

Figure 2.1  Front and Side Perspective Drawings of the Pendubot.

direct drive control, we designed the Pendubot to hang off the side of a table coupling link

one directly to the shaft of the motor.   The mount and bearings of the motor are then the

support for the entire system.  Link one also includes the bearing housing which allows for

the motion of joint two.  Needle roller bearings riding on a ground shaft were used to

construct this revolute joint for joint two.  The shaft extends out both directions of the

housing allowing coupling to both link two and an optical encoder mounted on link one. This

optical encoder produces the position feedback of link two.  The design gives both links full

360° of motion.  Link one, however, cannot continuously rotate due to the encoder cable for

link two. Link two  has no constraint on continuous revolutions.
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Figure 2.2  Photograph of the Pendubot in its Top Balancing Position.

Link two is simply a ¼ inch (0.635 cm) thick length of aluminum with a coupling that

attaches to the shaft of joint two.

The lengths of the links were determined by intuition and earlier work on the Acrobot

[1] and then confirmed with simulation.  The intuition comes from thinking about balancing a

broom or a similar object in the palm of your hand.   The longer the broom the easier it is too

balance.  Of course if it gets too long it is too heavy to hold and in the case of the Pendubot

even harder to swing up from the hanging position.  A length of 14 inches (35.56 cm) was

chosen for link two.  This gave it a good center of mass location with acceptable total mass.

Designing the length of link one is a little different.  It needs to have some length and

good stiffness so it can quickly get under link two when balancing, but the heavier it is the

more torque the motor must produce.  A length of 8 inches (20.32cm) was chosen for link

one and the center material of the link was removed (See Figure 2.1). Please refer to

Appendix F for the mechanical drawings of the links and couplings.

To test our intuition on the length and weights of the links, we first performed

simulation studies of the Pendubot and its controller.  AutoCAD’s solid modeling extension

was used to get an approximation of the dynamic parameters of the system (See Chapter 4).

Then the software package Simnon [4] was used to simulate the dynamic equations and
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controller of the Pendubot (See Chapter 8). The design was confirmed by observing that the

control effort remained less than the maximum torque of the motor when swinging the links

to their upright position and balancing them there.

The final component of the Pendubot’s hardware is its controller.  See Figure 2.3 for

a pictorial description of the interface between the Pendubot and the controller.  BEI 1024

counts/rev resolution optical encoders, one attached at the elbow joint and one attached to

the motor, were used as the feedback mechanism for the joint angles.  Advanced Motion

Control’s 25A8 PWM servo amplifier was used to drive the motor.  In the control algorithm

this amplifier can be thought of as just a gain.  In the case of the Pendubot we setup the

amplifier in torque mode and adjusted it for a gain of 1V=1.2Amps.

Figure 2.3   Pictorial of the Pendubot's Interface with its Controller.

In an attempt to simplify the controller for the Pendubot and minimize its cost, we

implemented our control algorithm using only the microprocessor in our PC instead of

purchasing an additional DSP card.  We used a 486DX2/50 IBM compatible PC with a D/A

card and an encoder interface card.  The DAC-02 card by Keithley Metrabyte was used for

the digital to analog converter and the 5312B by Technology 80 was used to interface with

the optical encoders.  The X4 quadrature mode was used on this card to increase the

resolution of the optical encoders by 4, giving 4096 counts/rev.  Then with the software

library routines accompanying the cards, we were able to write C programs to implement the

control algorithms (See Appendix E).
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The only difficulty in using a PC as a digital controller is finding a way to reliably get

a fast sampling period interrupt.  DOS does produce a clock pulse but it only occurs every 55

milliseconds making it useless for this system which needs at least a 10 ms sampling period.

To get around this, the timer chip on the motherboard of the PC was directly programmed to

achieve a higher resolution.  The software package “PC Timer Tools” by Ryle Design

includes an alarm algorithm that can be used to produce an appropriate sampling period (i.e.

5ms).  The format of the control algorithm then is as follows:

/* Perform all needed initializations */
/* start 5ms alarm */
while (Continue_Control==TRUE) {

      /* sample encoder positions */
    /*  use finite differences to calculate velocity */
    /* calculate needed control effort */
    /* output control value to motor */
    while (Alarm_expired == FALSE) {
       /* continue to loop until alarm expires */
    } /***** end of second while *****/
}  /***** end of first while ****/

  This control design worked very well.  We are able to reliably achieve a 1ms

sampling period even when computing the inverse dynamic equations for the partial feedback

linearization control (See Chapter 5).  A 5 ms sampling period was used by most of our

controllers in order to allow us to save response data while the controller was operating.  A 5

ms sampling period also allows room to update our controller with a Windows GUI interface

which requires more overhead running in the Windows operating system.  

3.  SYSTEM MODEL
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Figure 3.1   Coordinate Description of the Pendubot.  l1 is the length of link
one, lc1 and lc2 are the distances to the center of mass of the respective links
and q1 and q2 are the joint angles of the respective links.

The equations of motion for the Pendubot can be found using Lagrangian dynamics

[5].  In matrix form the equations are

D q q C q q q g q( )�� ( , �) � ( )+ + = τ                                                 (3.1)

where τ is the vector of torque applied to the links and q is the vector of joint angle positions

with

D q
d d

d d
( ) =







11 12

21 22

            

d m l m l l l l q I I

d d m l l l q I

d m l I

c c c

c c

c

11 1 1
2

2 1
2

2
2

1 2 2 1 2

12 21 2 2
2

1 2 2 2

22 2 2
2

2

2= + + + + +

= = + +

= +

( cos )

( cos )         (3.2)

and

C q q
hq hq hq

hq

h m l l qc

( , �)
� � �

�

sin

=
+

−






= −

2 2 1

1

2 1 2 2

0                                                  (3.3)

and
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g q

m l m l g q m l g q q

m gl q q
c c

c

( )

( ) cos cos( )

cos( )

= 





= + + +
= +

φ
φ

φ
φ

1

2

1 1 1 2 1 1 2 2 1 2

2 2 2 1 2

 .                        (3.4)

m1 : the total mass of link one.
l1 : the length of link one (See Figure 3.1).
lc1 : the distance to the center of mass of link 1 (See Figure 3.1).
I1 : the moment of inertia of link one about its centroid.
m2 : the total mass of link two.
lc2 : the distance to the center of mass of link 2 (See Figure 3.1).
I2 : the moment of inertia of link two about its centroid.
g : the acceleration of gravity.

From the above equations it is observed that the seven dynamic parameters can be

grouped into the following five parameter equations

θ
θ
θ
θ
θ

1 1 1
2

2 1
2

1

2 2 2
2

2

3 2 1 2

4 1 1 2 1

5 2 2

= + +
= +
=
= +
=

m l m l I

m l I

m l l

m l m l

m l

c

c

c

c

c

.                                                         (3.5)

For a control design that neglects friction, these five parameters are all that are needed.

There is no reason to go a step further and find the individual parameters since the control

equations can be written with only the five parameters.   Substituting these parameters into

the above equations leaves the following matrices

D q
q q

q
( )

cos cos

cos
=

+ + +
+







θ θ θ θ θ
θ θ θ

1 2 3 2 2 3 2

2 3 2 2

2
,                                    (3.6)

C q q
q q q q q q

q q
( , �)

sin( )� sin( )� sin( )�

sin( )�
=

− − −





θ θ θ
θ

3 2 2 3 2 2 3 2 1

3 2 1 0
,                     (3.7)

g q
g q g q q

g q q
( )

cos cos( )

cos( )
=

+ +
+







θ θ
θ

4 1 5 1 2

5 1 2

.                                               (3.8)

Finally, using the invertible property of the mass matrix D(q) [5], the state equations are

given by
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��

��

( ) ( ) ( , �) � ( ) ( )

, � , , �

�

� ��

�

� ��

q

q
D q D q C q q q D q g q

x q x q x q x q

x x

x q

x x

x q

1

2

1 1 1

1 1 2 1 3 2 4 2

1 2

2 1

3 4

4 2







= − −

= = = =
=
=
=
=

− − −τ

.                    (3.9)

4.  SYSTEM IDENTIFICATION
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4.1 CAD Solid Model

After formulating the mathematical model of the Pendubot, the next step was to

identify the five parameters in equation (3.5).  An AutoCAD solid model of the Pendubot was

drawn to give approximate numbers for these parameters.  As mentioned previously, these

approximate parameters helped in the design of the Pendubot.  Used in simulations, they

allowed us to determine if the motor would be powerful enough to manipulate the two links.

They also served as a guide to determine the accuracy of the on-line identification methods

described in the next two sections.  Taking into account the amplifier gain, Kamp =1.2A/V,

and the torque constant of the motor, KT =3.546 lbin/A (0.4006 Nm/A), the solid model

parameters were

θ1 = 0.089252 V*s2

θ2 = 0.027630 V*s2

θ3 = 0.023502 V*s2

θ4 = 0.011204 V*s2/in  (0.44110 V*s2/m)
θ5 = 0.002938 V*s2/in  (0.11567 V*s2/m).

4.2 Energy Equation Method

This on-line identification scheme uses the energy theorem to form equations that can

be solved for the unknown parameters by a least squares problem [6].

The kinetic energy of the Pendubot is written as

K qD q q=
1

2
� ( ) �                                                             (4.1)

where D(q) is defined by equation (3.6).  Performing the matrix multiplication produces the

following equation for the kinetic energy

K q q q q q q q q q q= + + + + +1
2 1

2
1

1
2 1

2
1 2

1
2 2

2
2 2 1

2
2 1 2 3� ( � � � � ) (cos � cos � � )θ θ θ .                  (4.2)

The potential energy of the Pendubot is written

V m l m l g q m l g q qc c= + + +( ) sin sin( )1 1 2 1 1 2 2 1 2 .                                (4.3)

In terms of the parameters to be identify it is simplified to

V g q g q q= + +θ θ4 1 5 1 2sin sin( ) .                                          (4.4)

Looking at the above equations it is observed that the kinetic and potential energy equations

are both linear in the inertial parameters.  A simple way to write these equations then is
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K
K

DK

V
V

DV

ii
i i

i
i

ii
i i

i
i

= =

= =

= =

= =

∑ ∑

∑ ∑

∂
∂θ

θ θ

∂
∂θ

θ θ

1

5

1

5

1

5

1

5

.

                                              (4.5)

For the Pendubot the new terms DK and DV are

                     

DK q

DK q q q q

DK q q q q q

DK

DK

1
1
2 1

2

2
1

2 1
2

1 2
1

2 2
2

3 2 1
2

2 1 2

4

5

0

0

=

= + +
= +
=
=

�

� � � �

cos � cos � � ,                                               (4.6)

                     

DV

DV

DV

DV g q

DV g q q

1

2

3

4 1

5 1 2

0

0

0

=
=
=
=
= +

sin

sin( )

.                                                            (4.7)

The energy theorem which states that the work of forces applied to a system is equal

to the change of the total energy of the system can be written as

T q
T

dt
t
t K t V t K t V t L t L t� ( ( ) ( )) ( ( ) ( )) ( ) ( )
1

2 2 2 1 1 2 1∫ = + − + = −                        (4.8)

where L(ti) is the total energy at time ti,  L(ti) = K(ti) + V(ti), and T is the vector of torque

applied at the joints.  T includes both the motor torque and the friction forces and can be

written

T = τ + Γf.                                                                (4.9)

For this study we neglected friction setting Γf to zero.  See Appendix A for the addition of

friction terms.

Again using the property that K and V are linear in the inertial parameters, the

difference in the total energy is defined  L(t2) - L(t1) = DLTθ, where

 DLT = [DL1(t2)-DL1(t1)  ...   DL5(t2)-DL5(t1)]                        (4.10)

and

DLi(tk) = DKi(tk)+DVi(tk).                                      (4.11)

This leaves the energy equation in the form
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T q DLT

t

t
Tdt�

1

2∫ = θ .                                             (4.12)

Defining a new vector d, dT = DLT, the Kth equation related to the time interval

(tK-1,tK) is written

( � )T qT

t

t

K K
Tdt d

K

K

−
∫ =

1

θ .                                               (4.13)

The K equations can be combined into a standard over determined matrix equation, Ax=b,

and solved by least squares techniques.  Also since DLi(0) =0 for (i=1,...,5), we can write this

equation as

( � )T qT

t

t

K K
Tdt d

K

0
∫ = θ                                                 (4.14)

where the Kth equation is now for the time interval (t0,tK).

To implement this identification scheme we wrote a simple program that drove the

Pendubot with an open loop signal and at the same time recorded the response of the system.

This response data was then loaded into Matlab where the identification algorithm could be

performed.  To approximate the integral on the left hand side of the least squares problem the

backwards trapezoidal rule was used.  The resulting Matlab M-file was as follows:

%q1, dq1, q2 and dq2 are vectors of joint positions and velocities
g=386; (SI Units = 9.8)
dL1 = (.5*dq1.^2);
dL2 = (.5*dq1.^2 + dq1.*dq2 + .5*dq2.^2);
dL3 = (cos(q2).*(dq1.^2 + dq1.*dq2));
dL4 = (g*sin(q1));
dL5 = (g*sin(q1+q2));
taudq1 = tau.*dq1;       %tau is the open loop control effort
for i = 1:(length(dL1)-10),
DL(i,1) = dL1(i+10)-dL1(1);
DL(i,2) = dL2(i+10)-dL2(1);
DL(i,3) = dL3(i+10)-dL3(1);
DL(i,4) = dL4(i+10)-dL4(1);
DL(i,5) = dL5(i+10)-dL5(1);
Itq(i,1) =  trapz(t(1:i+10,1),taudq1(1:i+10,1));
end
theta = nnls(DL,Itq)   %non-negative least squares solution to Ax=b.

Different open-loop inputs (i.e. sine wave, square wave, single steps) were tried in an

attempt to see which best identified the system.  A simple step input was found to work well

giving the most consistent results.  The input units were volts (V) applied to the amplifier in
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order that the parameters identified also contained the amplifier gain.  The mean of the

parameters found by this method with the step input, v = 2.5, were

 θ1 = 0.0799 V*s2

θ2 = 0.0244 V*s2

θ3 = 0.0205 V*s2

θ4 = 0.0107 V*s2/in  (0.42126 V*s2/m)
θ5 = 0.0027 V*s2/in  (0.10630 V*s2/m).

We did attempt to add the friction components to the identification algorithm.

Unfortunately, we were unable to find conclusive results for the friction terms.  Please see

Appendix A for the addition of the friction to the Pendubot model and this identification

method.  The friction in the Pendubot system is low which may be the reason the energy

based identification algorithm does not identify it well.  As pointed out in Prüfer, Schmidt

and Wahl [7] the energy based algorithm generally has difficulty identifying friction terms.

Fortunately the parameters found ignoring friction, as we will demonstrate, work very well in

controlling the system.

4.3  Optimization Method

The second on-line method implemented to identify the unknown parameters of the

Pendubot uses a constrained minimization algorithm.  The error between actual data collected

from the Pendubot and data created by simulations is minimized by varying the unknown

parameters until a best fit is found.  The minimization problem can be written as follows

Min y yri

t

si
i

θ ( )
0

2

1

4

∫∑ −






=

s.t.   (4.15)
θlb < θ < θub

where yri is the output position and velocity data of the actual Pendubot and ysi is the output

position and velocity data found by simulation runs.  θ is the vector of inertial parameters to

be found and θlb and θub are the lower and upper bounds on these parameters.

The Matlab function "constr" [8] is used to perform this minimization algorithm.

"Constr" uses a sequential quadratic programming [9] method to solve the constrained

minimization problem.
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To implement this identification scheme in Matlab, two function m-files were needed.

An objective function to be called and minimized by "constr" and a simulation  function

modeling the dynamics of the Pendubot.  Please refer to Appendix C for the listing of these

m-files and the other initialization files used.  The simulation function, "pend.m" in Appendix

C, defines the nonlinear O.D.E.s of the Pendubot just as seen in equation (3.9) or equation

(A.3) if friction is added.  To drive the simulated linkage, the same open loop torque equation

applied to the Pendubot when collecting the real time data is used to calculate the torque

applied to the simulated system.  With this function Matlab can simulate the dynamics of the

Pendubot with its O.D.E. solver "ode45".

The objective function, "pend_obj.m" in Appendix C, takes as input the unknown

parameters and outputs the integral of the error squared, equation (4.15).  To accomplish this

the objective function first calls “ode45” with the simulation function and the given inertial

parameters.  This in turn returns simulated response data.  The simulated response data and

the actual response data are then compared at each time interval of the actual response data,

0.005 seconds.  "Ode45" does not perform equally spaced time steps when evaluating the

O.D.E. so the simulated response data is interpolated to match up with the time intervals of

the actual response data.  The Matlab function “interp1” with the spline option is used for this

purpose.  Finally, using the “trapz” function to evaluate the integrals, the objective function is

calculated and returned to "constr".

As with the energy equation method, section 4.2, depending on the open-loop torque

trajectory applied, the minimization method was able to do a good job of identify the

parameters of the Pendubot.  In this case sinusoidal inputs were found to give the best

results.  For example an open loop input, v = 0.5sin7.7t (volts), excited the system enough to

allow for an adequate identification.  Note, as in the energy equation method, the units of the

input signal are taken to be volts (V) applied to the amplifier so the identified parameters will

contain the amplifier gain.  The parameters found with the above input were

θ1 = 0.09242 V*s2

θ2 = 0.0247 V*s2

θ3 = 0.0214 V*s2

θ4 = 0.01184 V*s2/in  (0.46614 V*s2/m)
θ5 = 0.00254 V*s2/in  (0.1000 V*s2/m).
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As with the energy equation method,  this method was unable to identify the friction

parameters of the Pendubot.  Matlab had a problem solving the minimization problem when

the friction terms were added.  Stack faults occurred in the middle of each attempted

minimization run which indicated some type of numerical problem.  Possibly since the friction

is low in the linkages, the “constr” function had problems finding adequate friction

parameters.  It is noted though that the friction is obviously present in the actual Pendubot

and will add to the five parameters found.

4.4  Comparison of the Results

Table 4.1 shows a list of each set of parameters identified by the different methods.

Similar results were produced by each method, which indicated success in identifying the

parameters of the Pendubot.  There are some variations in the parameters between the

Solid Model Energy Equation Minimization
θ1 (V*s2) 0.08925 0.0799 0.09242
θ2 (V*s2) 0.02763 0.0244 0.0247
θ3 (V*s2) 0.0235 0.0205 0.0214

θ4 (V*s2/in) 0.0112 0.0107 0.01184
θ5 (V*s2/in) 0.00294 0.0027 0.00254

Table 4.1  Comprehensive List of Identified Parameters by Method.

methods, but nothing to conclude that one of the methods were in error.  Since friction is

ignored  in both the energy equation method and the minimization method,  its effect on the

system are added to the parameters identified.  Ignoring the friction possibly has different

effects on the identification schemes, therefore creating the differences seen in the

parameters.  Friction does not enter into the solid model method, therefore also creating

possible causes for the differences seen.  Of course there are also numerical and modeling

errors that are different between the methods.  The solid model method is relying on the

assumptions of the drafter for accuracy in the model.  Both the energy equation method and

the minimization method use the data collected from the Pendubot which is inherently noisy,

especially the velocity data, which is derived by a finite difference equation (See Chapter 7).
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Since only these small variations were found, we were able to conclude that the actual

parameters of the Pendubot were in close proximity to the parameters listed in Table 4.1.  

Due to the small variation of the results found, the parameters identified by the energy

equation method were chosen as the parameters to be used for the control experiments.

Initially attempts were made to determine if one set of parameters out performed the others.

Only small performance variations, if any, were seen when comparing the different parameter

sets. For this reason only one set was chosen for consistency.

5.  SWING UP CONTROL

As stated earlier the goal of the Pendubot controller is to swing the links from their

stable hanging position to unstable equilibrium positions and then balance the links about that

equilibrium.  This control is divided into two parts; swing up control, and balancing control.

The swing up control uses the method of partial feedback linearization.  Many different
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control algorithms could have been used to perform the swing up.  In fact initially we used a

PID controller servoing around only the position of link one to swing up the Pendubot.  This

worked fine but amplified numerical noise.  Partial Feedback Linearization needs position

feedback from both link one and link two but takes into account the nonlinear effects of the

linkage.  This creates a much cleaner control compared to a PID control that must reject the

effects of the first and second link.

We will now derive the partial feedback control for the Pendubot.  To see a general

derivation of partial feedback linearization please refer to [2] and [3].

The equations of motion of the Pendubot are given by equation (3.1).  Performing the

matrix and vector multiplications, the equations of motion are written

d q d q c q c q11 1 12 2 11 1 12 2 1 1�� �� � �+ + + + =φ τ (5.1)

d q d q c q21 1 22 2 21 1 2 0�� �� �+ + + =φ . (5.2)

Due to the underactuation of link two we can not linearize the dynamics of both degrees of

freedom.  We can, however, linearize one of the degrees of freedom.  This will allow us to

design an outer loop control that will track a given trajectory for the linearized degree of

freedom.  In the case of the Pendubot we chose to linearize about the collocated degree of

freedom q1.  Equation (5.2) was solved for the angular acceleration of link two

��

�� �

q
d q c q

d2
21 1 21 1 2

22

=
− − − φ

. (5.3)

This was then substituted into equation (5.1) and written as

d q c q c q11 1 11 1 12 2 1 1�� � �+ + + =φ τ (5.4)

with
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d d
d d

d

c c
d c

d

c c

d

d

11 11
12 21

22

11 11
12 21

22

12 12

1 1
12 2

22

= −

= −

=

= −φ φ
φ

.

(5.5)

Then just as with the full linearization method (also called the computed torque method [5])

the inner loop control that linearizes q1 can be defined as

τ φ1 11 1 11 1 12 2 1= + + +d v c q c q� � . (5.6)

This results in the system

��q v1 1= (5.7)

d q c q d v22 2 21 1 2 21 1�� �+ + = −φ . (5.8)

Since equation (5.7) is now linear, an outer loop control can be designed to track a

given trajectory for link one.  The response of link two then is given by the resulting

nonlinear equation (5.8).  Equation (5.8) represents internal dynamics with respect to an

output y = q1.  The goal of the outer loop control then is to track a given trajectory for link

one and at the same time excite the internal dynamics to swing link two to a balancing

position.  For the Pendubot we chose to use a PD with feedforward acceleration

v q K q q K q qd
d

d
p

d
1 1 1 1 1 1= + − + −�� ( � � ) ( ) . (5.9)

See Figure 5.1 for a block diagram of the swing up control.

Figure 5.1  Block Diagram of the Partial Feedback Linearization Control
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Now, given this controller, a trajectory must be determined to swing the links to their

unstable equilibrium position.  To swing the links to the upright top position (q1 =π/2, q2=0),

we simply used a step trajectory q1=π/2.  This trajectory worked very well in simulation but

when trying it out on the actual system the starting torque of the motor was not strong

enough to consistently swing the second link all the way to its upright position.  On power up

of the system, the first few trials would excite the second link enough to bring it to the top

equilibrium position.  As the motor warmed up, though, its torque constant would decrease

slightly and not allow the second link to swing to the top.  We also determined that the

power supply for the amplifier was not a perfect match for the motor we had purchased.

Only approximately 60% of the total torque of the motor was being utilized.  To get around

this problem we added to the swing up trajectory a small open loop step that sent the link in

the negative direction for a short period of time adding potential energy into the system.  This

added energy allowed the motor to excite the internal dynamics and consistently swing both

links to the upright position.  It is noted that this torque deficit causes extended saturation in

the control output.  Figure 9.1 shows a plot of the voltage applied to the amplifier when

performing the swing up to the top.  For approximately the first half second of the swing up,

the signal is saturated and therefore not performing the partial feedback linearization control.

In fact, initially, the swing up control is a bang-bang control.

The swing up trajectory to swing the links to the mid position (q1 =-π/2, q2=π) was a

little more difficult (See Figure 5.2).  Simulations were run to find a trajectory that would

work well.  The trajectory found for the swing up can be written

q1=1.4sin(5t)-π/2 : t<2π/5
q1 =-π/2 : t>2π/5.

This trajectory pumps energy into the system by causing the second link to swing back and

forth and finally up to its middle equilibrium point.
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Figure 5.2  Photograph of the Pendubot in its Mid Balancing Position.

To fine tune the swing up control, the Kp and Kd gains were adjusted.  Correct gains

were found that swing the second link slowly into its equilibrium position so that the

balancing controller can catch and balance the link.

6.  BALANCING CONTROL
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The control for balancing the Pendubot is very similar to the classical cart-pole

inverted pendulum problem.  To design the controller we linearized the Pendubot’s nonlinear

equations of motion (3.9), and designed a full state feedback controller with the linear model.

The Taylor series approximation

f x u f x u
f

x
x x

f

u
u ua a r r x u r x u rr r r r

( , ) ( , ) ( ) ( ), ,= + − + −
∂
∂

∂
∂

(6.1)

was used to linearize the plant.  x is the vector of states given in equation (3.9).  u is the

single control input for the Pendubot.  xr and ur are the equilibrium values of the states and

control respectively.  Since we are only interested in controlling the Pendubot at equilibrium

positions, fa(xr,ur) will always be zero.  All that is needed then is to find the partial derivative

matrices and evaluate them at the equilibrium points.  Studying equations (3.6) through (3.9)

it is observed that the Pendubot’s equilibrium points can be defined by

u g xr r= θ4 1cos( ), (6.2)

x xr r1 3 2+ = π . (6.3)

Differentiating equation (3.9) with respect to the states leaves the A matrix in the linearized

model
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The B matrix is found by the partial derivative with respect to the control input
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0
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4

. (6.5)

Refer to Appendix B for a full derivation of these partial derivative terms.

Each equilibrium point defines a different linearized system (See Appendix B).  This

means that different control gains will be needed for each equilibrium point for best results in

the balancing of the Pendubot.  Most of our work with the Pendubot dealt with two
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equilibrium points.  We define the top balancing position as the upright position with xr1=π/2,

xr3=0 and ur = 0 (See Figure 2.2).  The mid balancing position is defined as

xr1=-π/2, xr3=π and ur = 0 (See Figure 5.2).

Using these equilibrium values and the parameters identified by the energy equation

method (See section 4.2), the linear models for the top and mid equilibrium positions are as

follows

Top Mid

�

. .

. .

.

.

x Ax Bu

A

B

= +

=
−

−



















=

−



















0 1 0 0

519265 0 13 9704 0

0 0 0 1

52 8402 0 68 4210 0

0

159549

0

29 3596

�

. .

. .

.

.

.

x Ax Bu

A

B

= +

=
−



















=

−



















0 1 0 0

519265 0 139704 0

0 0 0 1

510128 0 40 4801 0

0

15 9549

0

2 5502

Now given these linear models we can use LQR or pole placement techniques to

design full state feedback controllers, u=-Kx.  For example with

[ ]R

Q

=

=



















1

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

,

the Matlab function  “lqrd” can be used to derive optimal control gains for a discrete

controller.  Using a sampling period of 5ms the optimal gains are

[ ]
[ ]

K

K

Top

Mid

= − − − −

=

32 68 714 32 76 4 88

10 96 1 19 28 2 81

. . . . ,

. .44 . . .

The top and mid positions are not the only possible equilibrium positions of the

Pendubot.  In fact there is a continuum of equilibrium positions.  Figure 6.1a shows another
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possible configuration.  There are four uncontrollable positions, xr1=0, xr3=π/2 or -π/2  and

xr1=-π, xr3=π/2 or -π/2.  Figure 6.1b shows the first of these positions.

a. b. 

Figure 6.1   Other Possible Equilibrium Positions.  a. Another controllable
equilibrium.  b. One of the four uncontrollable equilibrium.

In Chapter 9  response data is shown of a controller that demonstrates the capability of the

Pendubot to balance in positions other than the top and mid positions.  A gain scheduling

technique is used to step the Pendubot to a new equilibrium position every 2 seconds.  Each

step moves the links closer to the uncontrollable equilibrium shown in Figure 6.1b, and in

turn produces an equilibrium that is increasingly harder to control.  Limited by the torque of

the motor and the weight of the links, the Pendubot becomes unstable before it reaches the

uncontrollable configurations.  An exact study was not performed to see where the Pendubot

became unstable, but approximately 40° offset from the top and mid positions was the limit

for the motor balancing the links.  See the source code “cirbot.c” listed in Appendix E for the

gains used at each equilibrium position.
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7.  COMBINING AND IMPLEMENTING THE CONTROLLERS

With both the swing up control and the balancing control complete, an algorithm was

needed to connect the two.  Initially when working with only computer simulations of the

Pendubot, the controllers were switched at a determined time (See Chapter 8 and Appendix

D).  This switch time was determined by observing when the swing up control had brought

the links almost to rest at the desired equilibrium position.  This worked very well for the

simulation but behaved poorly when realized on the actual Pendubot.  The reason being that

the simulations are exactly repeatable but the actual runs are susceptible to different initial

conditions and computational noise making them unable to repeat reliably.  The following

algorithm was used instead to give the Pendubot more intelligence and switch the control by

watching the states of the system.

if   |x1- xr1| < .10 {
                  if  |x3- xr3| < .20 {
                      u = -Kx ;
                      if  |u| <  9 /* Volts */ {
                          /* Output balancing control */
                      } else /* Output swing up control */
                  } else  /* Output swing up control */
              } else /* Output swing up control */

This algorithm waits for link one to arrive within 0.1 radians of its equilibrium position and

then checks link two.  If link two is also within 0.20 radians of its equilibrium position, the

balancing control is calculated.  If the control output is less then 9 volts, 10 volts being the

maximum DAC output for the Pendubot, the control is switched to the balancing mode.

Otherwise the links are passing too quickly though the equilibrium point and the swing up

control remains intact.

Another implementation issue that arises in the controller design of the Pendubot is

the approximation of the joint velocities.  There is only position feedback in the system so a

finite approximation is used to estimate the velocity.  To find the velocity we simply used the

finite difference method, [x(k)-x(k-1)]/sample period.  This creates numerical error or noise

in the calculation of the control effort, though, due to the finite resolution of the optical

encoders.  We found that simply taking the average of the last three velocities helped to filter



25

and decrease this noise.  For example the velocity calculation for joint one, state x2(k), is

written as follows

x k
x k x k

t2
1 1 1

( )
( ) ( )

,=
− −
∆

(7.1)

x k
x k x k x k

2
2 2 21 2

3
( )

( ) ( ) ( )
.=

+ − + −
(7.2)

A dither signal was also needed to help balance the links in the top position.  Due to

friction and the increased effect of gravity on the links in the top position, the balancing

control was not able to hold the links motionless.  The balance control at the mid position did

not have this problem.  The main reason for this is that gravity works with the control at the

mid position to keep link one at the equilibrium.  Where as with the top position, gravity

works to pull both of the links away from the equilibrium.  The motion produced was a large

amplitude sway (approximately 0.2 radians).  To eliminate some of this motion an open-loop

dither signal was added to the control,

u = -Kx  + .25sin40.0t. (7.3)

This dither signal helped to eliminate much of the sway but it was not able to cancel all of the

motion.  See Figure 9.1 for a plot of the motion around the equilibrium with the dither signal

added.

8.  SIMULATION RESULTS
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This chapter displays the simulation results found when simulating the Pendubot with

the software package Simnon [4].  The details of these simulations can be found in Appendix

D which contains the Simnon program files used.  Figure 8.1 shows a swing up, catch and

balance of the Pendubot in the top position and Figure 8.2 shows the same for the mid

position.  This chapter serves as a comparison for the actual data shown in the following

chapter.
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Figure 8.1  Simulation in Simnon:  Swing Up to the Top Position.
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Figure 8.2  Simulation in Simnon:  Swing Up to the Mid Position.

9.  EXPERIMENTAL RESULTS
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This final chapter shows actual responses of the Pendubot system.  The balancing

controller gains for these runs were found by pole placement methods and are listed in the

figure’s description.  Figures 9.1 and 9.2 show the Pendubot swinging and balancing  at the

top and mid positions respectively.  Figure 9.3 demonstrates the ability of the Pendubot to

balance at its many equilibrium points.  The control used for Figure 9.3 swings the links to

the mid position and then steps the links at 5° increments away from the mid position every

two seconds.  Each new equilibrium point has its own balancing control gains and an

equilibrium control ur = Θ4gcos(xr1 ) which is no longer zero.
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Figure 9.1  Swing Up and Balance Control at the Top Position.  Outer Loop
control gains used for the swing up control:  Kp=150.0,Kd=21.7.  Full state
feedback gains used for the balancing control: K=[-27.48 -6.07 -28.58 -4.24].
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Figure 9.2  Swing Up and Balance Control at the Mid Position.  Outer Loop
control gains used for the swing up control:  Kp=32.0,Kd=4.85.  Full state
feedback gains used for the balancing control: K=[15.31 1.76 22.86 3.38].
Swing up trajectory: 1.4sin(5t) - π/2.
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Figure 9.3  Demonstration of other Balancing Positions.  This plot first shows the
swing up and balance control at the mid position identical to Figure 9.2.   This
plot also goes further and demonstrates the Pendubot’s balancing capabilities at
other equilibrium points. Full state feedback gains change for each equilibrium.

10.  CONCLUSION
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This thesis presented our new design of a two link underactuated planar revolute

robot, named the Pendubot.  Its actuated joint is located at the shoulder and the elbow joint is

unactuated and allowed to swing free.  The controller for the Pendubot was implemented

using data acquisition cards and an IBM compatible 486DX2 PC.  Three different parameter

identification methods were used to identify the unknown dynamic parameters of the linkage.

First the parameters were found off-line by creating a solid model of the Pendubot in a CAD

package.  The second method is an on-line method that takes advantage of the energy

equations of the linkage which are linear in terms of the unknown dynamic parameters.  A

simple least squares problem was then derived to solve for the parameters.  The third method,

also on-line, uses a constrained minimization algorithm to minimize the error between actual

collected response data and simulated response data.   Two controllers were designed for the

Pendubot.  Partial feedback linearization techniques were used to design the control that

swung the links from their hanging stable position to unstable equilibrium positions.  Then to

catch and balance the second link at the unstable equilibrium, full state feedback controllers

were designed using the linearized model of the links at the desired position.  Results were

presented demonstrating the performance of the Pendubot with these controllers.
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